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1. About These Notes/Note to Students

These notes are for the Arizona Winter School on Abelian Varieties,
March 2–6, 2024. We start with sections contains background material
on algebraic geometry (§2), abelian varieties (§3), and height func-
tions (§4). This is followed by sections with expanded versions of the
material covered in the lectures:

Lecture 1: Construction and properties of canonical heights (§5)
Lecture 2: Applications (§6); Local canonical heights (§7)
Lecture 3: Lower bounds for canonical heights (§8)
Lecture 4: Canonical heights in families; specialization theorems (§9)

Two final sections briefly discuss further topics (§10) and provide some
references to learn more about abelian varieties (§11). We have also
included a List of Notation and an Index to assist in reading these
notes.

Each section includes a number of exercises that are designed to
help the reader gain some feel for the subject matter. There are also
brief paragraphs in small type marked “Supplementary Material” that
describe advanced concepts and generalizations. This material is not
used in these notes and may be skipped on first reading. Appendix A
contains a number of proposed projects for our Winter School Working
Group. The specific questions described in these projects are meant
to serve as guidelines, and we may well find ourselves pursuing other
problems during the workshop.

Acknowledgements. I would like to thank the organizers of the Arizona
Winter School for inviting me to deliver these lectures. The author
used ChatGPT to help generate the code for the TiKZ diagrams.

2. Background Material: Algebraic Geometry

Figure 1 gives some standard algebraic geometry notation that we
will use throughout these notes.

©2024, J.H. Silverman



2. Background Material: Algebraic Geometry 3

K a field, typically a number field, a local field, or
an algebraically closed field.

K̄ an algebraic closure of K.

X/K a smooth projective algebraic variety, defined over K.

K(X), K̄(X) the function field of X over K, respectively over K̄.

Div(X) the group of geometric divisors of X, i.e., divisors
defined over K̄.

div(f) the divisor of a function f ∈ K̄(X).

∼ linear equivalence, D ∼ D′ if D−D′ = div(f) for
some f ∈ K̄(X).

L(D) = H0
(
X,OX(D)

)
=
{
f ∈ K̄(X) : div(f) +D ≥ 0

}
.

`(D) = dimK̄ L(D).

≡ algebraic equivalence of divisors.

Pic(X) = Div(X)/ ∼, the Picard group of X.

Div0(X) = {D ∈ Div(X) : D ≡ 0}.
Pic0(X) = Div0(X)/ ∼.

NS(X) = Div(X)/ ≡, the Néron-Severi group of X.

ρ(X) = rank NS(X).

End(X) the ring of endomorphisms X → X.

Aut(X) the group of automorphisms X → X, i.e.,
Aut(X) = End(X)∗.

Figure 1. Notation that will be used throughout these notes

Definition 2.1. Let D ∈ Div(X) be a divisor such that `(D) ≥ 1.
Let {f1, . . . , f`(D)} be a K̄-basis for L(D). The divisor D is very ample
if the rational map

[f0, . . . , fn] : X −→ P`(D)−1

is an embedding, i.e., an isomorphism onto its image. The divisor D
is ample if some multiple mD with m ≥ 1 is very ample. If D is very
ample, we select a basis for L(D) and write

fD : X ↪−→ P`(D)−1

for the associated embedding. If X and D are defined over K, we may
assume that fD is also defined over K.

©2024, J.H. Silverman



4 Canonical Heights on Abelian Varieties

Exercises for Section 2.

Exercise 2.A. Let F (x0, . . . , xN ) ∈ K̄[x0, . . . , xN ] be a non-zero homoge-
neous polynomial of degree d ≥ 1, and let

DF = {F = 0} ∈ Div(PN ).

(a) Write down a basis for L(DF ) and compute `(DF ).
(b) Prove that DF is very ample directly from the definition.

Exercise 2.B. Prove that

Pic0(PN ) = 0 and Pic(PN ) = NS(PN ) ∼= Z.

3. Background Material: Abelian Varieties

Definition 3.1. An abelian variety is a projective group variety, i.e.,
a projective variety A with a base point O ∈ A and morphisms

µ : A× A→ A and ι : A→ A

that give A the structure of a group:

µ(P,O) = µ(O,P ) = P.

µ
(
P, ι(P )

)
= µ

(
ι(P ), P

)
= O.

µ
(
µ(P,Q), R

)
= µ

(
P, µ(Q,R)

)
.

We say that the abelian variety is defined over K if A, µ, and ι are
defined over K and O ∈ A(K).

Theorem 3.2. An abelian variety is a smooth projective variety, and
its group law is abelian,

µ(P,Q) = µ(Q,P ).

We thus typically write the group operations as

µ(P,Q) = P +Q and ι(P ) = −P.

Remark 3.3. Every group variety is smooth, since a variety has at
least one non-singular point, and then translation can be used to show
that every point is non-singular. However, the commutativity of the
group law on an abelian variety is a consequence of the assumed pro-
jectivity. Note that there are many non-commutative group varieties,
for example GLn and SLn, but they are only quasi-projective, not pro-
jective.

Definition 3.4. Let A and B be abelian varieties. An isogeny from A
to B is a finite map ϕ : A → B satisfying ϕ(OA) = OB. We say
that A and B are isogenous if there exists an isogeny from A to B.
This is an equivalence relation, because one can show that if there is

©2024, J.H. Silverman



3. Background Material: Abelian Varieties 5

an isogeny from A to B, then there is also an isogeny from B to A; see
Exercise 3.B.

Definition 3.5. Let A be an abelian variety, and let Q ∈ A. The
translation-by-Q map is the map

TQ : A −→ A, TQ(P ) = P +Q.

Theorem 3.6. Let A and B be abelian varieties.

(a) Every isogeny ϕ : A→ B is a group homomorphism.
(b) Every finite morphism A→ B is a composition of an isogeny and

a translation.
(c) The collection of isogenies from A to B, which we denote by Hom(A,B),

is a group via the group law

(ϕ+ ψ)(P ) = ϕ(P ) + ψ(P ).

(d) The collection of self-isogenies of A, which we denote by End(A),
is a ring via

(ϕ+ ψ)(P ) = ϕ(P ) + ψ(P ) and (ϕψ)(P ) = ϕ
(
ψ(P )

)
.

Theorem 3.7 (Theorem of the cube). Let A and B be abelian varieties,
let ϕ1, ϕ2, ϕ3 ∈ Hom(A,B) be isogenies, and let D ∈ Div(B). Then

(ϕ1 + ϕ2 + ϕ3)∗D − (ϕ1 + ϕ2)∗D − (ϕ1 + ϕ3)∗D − (ϕ2 + ϕ3)∗D

+ ϕ∗1D + ϕ∗2D + ϕ∗3D ∼ 0.

Corollary 3.8. Let A be an abelian variety, let m ∈ Z, let D ∈ Div(A),
and let D− = [−1]∗D. Then

[m]∗D ∼ m2 +m

2
D +

m2 −m
2

D−.

In particular, if D− ∼ D, then [m]∗D ∼ m2D.

Theorem 3.9 (Theorem of the square). Let A be an abelian variety,
let P,Q ∈ A, and let D ∈ Div(B). Then

T ∗P+QD − T ∗PD − T ∗QD +D ∼ 0.

Theorem 3.10. Let A be an abelian variety. The Picard group Pic0(A)

has a natural structure as an abelian variety Â, which is called the
dual of A. The association A→ Â is functorial in the sense that each
homomorphism α : A → B induces a homomorphism α̂ : B̂ → Â. At
the level of divsor classes, the map α̂ is given by

α̂
(
[D]B

)
=
[
ϕ∗(D)

]
A
,

where we use [ · ]A and [ · ]B to denote divisor classes on A and B.
©2024, J.H. Silverman



6 Canonical Heights on Abelian Varieties

Definition 3.11. Let A be an abelian variety, and let D ∈ Div(A).
We define a map

ϕD : A −→ Â, ϕD(P ) = [T ∗−PD −D],

where in general [D] denotes the divisor class of D in Pic(A).

Theorem 3.12. Let A be an abelian variety, and let D ∈ Div(A).

(a) The map ϕD : A → Â depends only on the algebraic equivalence
class of D in NS(A).

(b) The map ϕD is a homomorphism.
(c) The map ϕD is an isogeny if and only if D is an ample divisor.

Definition 3.13. Let A be an abelian variety. A polarization of A is a
divisor D ∈ Div(A) such that ϕD : A→ Â is an isogeny. The degree of
the polarization is the degree of ϕD. It is a principal polarization if it
has degree 1. We say that A is principally polarized if it has a principal
polarization.

Theorem 3.14. Let A be an abelian variety.

(a) There exists a principally polarized abelian variety that is isogenous
to A.

(b) (Zarhin trick [93]) The product A4 × Â4 is principally polarized.

Definition 3.15. An abelian variety A is simple if it is not possible
to write it as a product A ∼= B × C of positive dimensional abelian
varieties B and C.

Theorem 3.16. Let A be a simple abelian variety, and let End(A)Q =
End(A) ⊗ Q. Then End(A)Q is a finite-dimensional semisimple Q-
algebra. Further,

dimQ End(A)Q ≤

{
2 dim(A) if char(K) = 0,

4 dim(A) if char(K) > 0.

The endomorphism ring End(A) is an order in End(A)Q.

We remark that much more is known about the structure of End(A)⊗
Q; see for example [65, §§19–21].

Theorem 3.17 (Poincaré complete reducibility theorem). Let A be an
abelian variety.

(a) There are simple pairwise non-isogenous abelian varieties A1, . . . , Ar
and exponents e1, . . . , er ≥ 1 so that A is isogenous to the product

A
isogeny−−−−→ Ae11 × · · · × Aerr .

Up to relabeling, the abelian varieties A1, . . . , Ar and postive inte-
gers e1, . . . , er are uniquely determined by A.

©2024, J.H. Silverman



3. Background Material: Abelian Varieties 7

(b) Continuing with the notation from (a), the endomorphism alge-
bra End(A)Q of A is a product of matrix algebras,

End(A)Q ∼=
r∏
i=1

Matri×ri
(
End(Ai)Q

)
.

An important tool in studying the endomorphism ring of a abelian
variety A is the Rosatti involution, which is an involution of the endo-
morphism algebra End(A)Q.

Definition 3.18. We fix an ample divisor H ∈ Div(A), and we let ϕH :

A→ Â be the associated isogeny; see Definition 3.11 and Theorem 3.12.
For α ∈ End(A), we let α̂ : Â → A be the dual map as described in
Theorem 3.10 with A = B. The Rosatti involution on End(A)Q is the
map1

End(A)Q −→ End(A)Q, α 7−→ α′ := ϕ−1
H ◦ α̂ ◦ ϕH .

We also use H to define a map from divisor classes to endomorphisms:

ΦD : NS(A)Q ↪−→ End(A)Q, ΦD = ϕ−1
H ◦ ϕD.

We state some useful properties of the Rosatti involution.

Theorem 3.19. The Rosatti involution and the map ΦD interact in
various ways, including the following :

(a) ΦD

(
NS(A)Q

)
=
{
α ∈ End(A)Q : α′ = α

}
.

(b) Φα∗D = α′ ◦ ΦD ◦ α for all α ∈ End(A)Q.
(c) If D ∈ NS(A)R is a nef divisor,2 then there is an α ∈ End(A)R

satisfying

ΦD = α′ ◦ α and α′ = α.

Proof. (a) See [65, page 208].
(b) See [43, Lemma 24].
(c) See [43, Proposition 26]. �

3.1. Abelian Varieties over Number Fields. The following fun-
damental theorem was proven originally by Mordell for elliptic curves
over Q and subsequently generalized by Weil to abelian varieties over
number fields.

1We note that ϕH will have an inverse in Hom(Â, A) if and only if H gives a

principal polarization, but that ϕH always has an inverse in Hom(Â, A)⊗Q.
2A nef (numerically effective) divisor is a divisor D whose intersection with every

curve C ⊂ A satisfies D · C ≥ 0. Equivalently, D is nef if it lies in the closure of
the ample cone in NS(A)R.

©2024, J.H. Silverman



8 Canonical Heights on Abelian Varieties

Theorem 3.20 (Mordell–Weil Theorem). Let K/Q be a number field,
and let A/K be an abelian variety. Then the group of K-rational
points A(K) is a finitely generated abelian group.

Proof. There are many places to read the proof of the Mordell–Weil
theorem, including [39, Part C], [47, Chapter 6], [47, Appendix II], [88,
Chapters VIII and X] (the last reference only covers elliptic curves). �

Remark 3.21. It follows from Theorem 3.20 that A(K) is the product
of a finite group and a free abelian group of finite rank,

A(K) ∼= A(K)tors × ZrankA(K).

It is conjectured that

#A(K)tors ≤ C1

(
[K : Q], dim(A)

)
,

but this has only been proven for dim(A) = 1 [42, 61, 63], and there are
still open problems concerning the optimal value of C1(n, d), although
it is known, for example, that C1(1, 1) = 16.

The rank is even more mysterious. For many years it was conjectured
that for every R there was an elliptic curve E/Q with rankE(Q) ≥
R. However, there is an heuristic argument [71] suggesting that the
converse is true, and indeed the authors of [71] suggest for example
that {

E/Q : dim(E) = 1 and rankE(Q) ≥ 22
}

is a finite set. So one might ask if there is a general bound of the form

rankA(K) ≤ C2

(
[K : Q], dim(A)

)
?

The author expresses no opinion as to the likely validity of such a
statement!

3.2. Abelian Varieties over Function Fields. Let k be a field, and
let K = k(C) be the function field of a smooth projective curve C/k.
Then an algebraic variety X/K may actually arise from a variety X0/k
defined over the constant field k, where we simply take X0 and view
it as being defined over K.3 It’s also possible for a variety over K to
be partially defined over k, for example, if it’s a product X = Y × Z,
where Y comes from a variety Y0/k. For abelian varieties A, the next
definition gives a more refined way to define the part of A that comes
from an abelian variety defined over k.

3In fancier terms, the variety X0/k is a scheme over Spec(k), and we obtain X/K
be extending the base field via the fiber product X = X0 ×Spec(k) Spec(K).

©2024, J.H. Silverman



3. Background Material: Abelian Varieties 9

Definition 3.22. Let k be a field, let K = k(C) be the function
field of a smooth projective curve C/k, and let A/K be an abelian
variety. A K/k-trace of A/K is a pair (B/k, ϕ) having the following
properties:

• B/k is an abelian variety.
• ϕ : B ×k K −→ A is a homomorphism defined over K.
• If B′/k is an abelian variety and ϕ′ : B′ ×k K → A is a K-homo-

morphism, then there exists a unique k-homomorphism ψ : B′ →
B such that ϕ′ = ϕ ◦ ψ.

We say that two K/k-traces (B/k, ϕ) and (B′/k, ϕ′) are isomorphic if
there is a k-isomorphism ψ : B′ → B such that ϕ′ = ϕ ◦ ψ.

Intuition 3.23. One may view the K/k-trace of A as being the “con-
stant part of A.”

Theorem 3.24. Let k be a field of characteristic 0, let K = k(C) be
the function field of a smooth projective curve C/k, and let A/K be
an abelian variety. Then there exists a K/k-trace for A/K, and it is
unique up to k-isomorphism.

Proof. See [49] for the classical construction, and [17] for a modern
formulation. �

The Mordell–Weil theorem (Theorem 3.20) for number fields extends
to the function field setting, where it is often still given the same name,
although in full generality the result is due to Lang and Néron.

Theorem 3.25 (Mordell–Weil (Lang–Néron) Theorem)). Let k be a
field of characteristic 0, let K = k(C) be the function field of a smooth
projective curve C/k, let A/K be an abelian variety, and let (B/k, ϕ)
be a K/k-trace of A/K. Then the group A(K)/ϕ

(
B(k)

)
is a finitely

generated group.

Remark 3.26. If k is a number field, then the original Mordell–Weil
theorem (Theorem 3.20) says that B(k) is finitely generated. Further,
we have defined traces and stated Theorem 3.25 when K = k(C) is the
function field of a curve, but this material can be extended to higher
dimensional bases. Then one version of the Lang–Néron theorem is
that if K is a field that is a finitely generated Q-algebra and A/K is
an abelian variety, then A(K) is a finitely generated group.

3.3. Twists of Abelian Varieties. The geometric isomorphism class
of an abelian variety fails to encompass the many possibilities for its
arithmetic. For this section, we fix the following notation:

K a number field or a function field.
©2024, J.H. Silverman



10 Canonical Heights on Abelian Varieties

Ksep a separable closure of K.

Definition 3.27. Let A/K be a variety. The set of Ksep/K-twists of A
is4

Twist(A/K) =
{B/K : B is Ksep-isomorphic to A}

K-isomorphism
.

Proposition 3.28. There is a natural identification

Twist(A/K) ∼= H1
(
Gal(Ksep/K),Aut(A)

)
defined as follows : For each B ∈ Twist(A/K), we choose a Ksep-
isomorphism ϕB : B → A, and then

B 7−→
[

the cohomology class determined
by the cocycle σ 7−→ ϕ−1

B ◦ σ(ϕB).

Proof. We leave the proof to the reader. �

Example 3.29 (Cyclic Twists). Let m ≥ 2 with m 6= 0 in K, and
suppose that there is a subgroup of Aut(A/K) that is isomorphic as a
Gal(Ksep/K)-module to the group µm ⊂ (Ksep)∗ of mth roots of unity.
Then we can use the maps

K∗/K∗m ∼= H1
(
Gal(Ksep/K),µm

)
−→ H1

(
Gal(Ksep/K),Aut(A/K)

)
∼= Twist(A/K) from Exercise 3.C

to obtain a unique twist ofA corresponding to each element ofK∗/K∗m.
Explicitly, let D ∈ K∗, let AD/K be the associated twist, and let δ ∈

K̄∗ satisfy δm = D. Then there is a Ksep-isomorphism

ξD : AD −→ A

characterized by

ξ−1
D ◦ σ(ξD) = [δσ/δ] ∈ µm ⊆ Aut(A/K).

Example 3.30. We assume that char(K) 6= 2. Then every abelian
variety A has quadratic twists, since we can embed µ2 into Aut(A) via

µ2 ↪−→ Aut(A), ζ 7−→
(
P 7→ [ζ](P )

)
.

For an elliptic curve, i.e., for dim(A) = 1, if we start with a Weierstrass
equation

E : y2 = x3 + ax+ b

4An abelian variety is group variety, and an isomorphism of an abelian varieties
is a homomorphism. One can also define twists of general varieties that don’t have
marked points.

©2024, J.H. Silverman



3. Background Material: Abelian Varieties 11

and let D ∈ K∗, then the associated quadratic twist is5

E(D) : Dy2 = x3 + ax+ b.

Example 3.31. Let m ≥ 2 with m 6= 0 in K, and let f(x) ∈ K[x] be a
separable polynomial with deg(f) ≥ 3. Then the automorphism group
of the curve

Cm : ym = f(x)

contains a copy of µm via

µm ↪−→ Aut(Cm), ζ 7−→
[
(x, y) 7→ (x, ζy)

]
.

These automorphisms of Cm induce automorphisms of the Jacobian Jm
of Cm, so we have an inclusion µm ⊆ Aut(Jm), and as described in

each D ∈ K∗/K∗m leads to a twist J
(D)
m of Jm. Explicitliy, the abelian

variety J
(D)
m is the Jacobian of the twisted curve

C(D)
m : Dym = f(x).

Exercises for Section 3.

Exercise 3.A. Use the theorem of the cube (Theorem 3.7) to prove Corol-
lary 3.8.

Exercise 3.B. Let ϕ : A→ B be an isogeny of abelian varieties.

(a) Prove that there is an isogeny ϕ̂ : B → A.
(b) Prove that the relation of being isogenous is an equivalence relation.

Exercise 3.C. Prove Proposition 3.28. (If you’re not familiar with non-
abelian cohomology, you may assume that Aut(A) is abelian, or in any case
restrict to an abelian subgroup of Aut(A).) In particular:

(a) Prove that σ 7−→ ϕ−1
B ◦ σ(ϕB) is a cocycle.

(b) Prove that choosing a different Ksep-isomorphism ψB : B → A changes
the cocycle by a coboundary.

(c) From (a) and (b) we get a well-defined map

Twist(A/K)→ H1
(
Gal(Ksep/K),Aut(A)

)
.

Prove that this map is injective.
(d) Prove that the map in (c) is surjective. [This is more difficult.]

Exercise 3.D. Let A/K be an abelian variety.

(a) Let A′/K be a quadratic twist of A/K, as described in Example 3.30.
Prove that there is a unique quadratic extension L/K such that A′ is
L-isomorphic to A, i.e., there is an isomorphism A′ → A that is defined
over L.

5By a simple change of variable, we can also write the quadratic twist of E as
E(D) : y2 = x3 +D2ax+D3b.

©2024, J.H. Silverman



12 Canonical Heights on Abelian Varieties

K a global field, i.e., a number field or the function
field of a curve.

MK a complete set of normalized absolute values on
K; see Definition 4.1.

M∞
K the archimedean absolute values in MK .

M◦
K the non-archimedean absolute values in MK .

Kv the completion of K at the absolute value v ∈MK .

HK , hK height on PN(K) relative to K; see Definitions 4.4 and 4.11.

H, h absolute height on PN(K̄); see Definition 4.5.

Figure 2. Notation for global fields that we will use

(b) For L as in (a), prove that

rankA(L) = rankA(K) + rankA′(K).

Hint : Construct homomorphisms

A(K)⊕A′(K) −→ A(L) and A(L) −→ A(K)⊕A′(K)

with finite kernels.

Exercise 3.E. Let A/K be an abelian variety such that µm ⊆ Aut(A/K)

as Gal(Ksep/K)-modules, and for D ∈ K∗/K∗m, let A(D)/K be the asso-
ciated twist of A as described in Example 3.29. Suppsoe that m and D
satisfy [

K(
m
√
D) : K

]
= m.

Prove that

rankA
(
K(

m
√
D)
)

=
m−1∑
i=0

rankA(Di)(K).

Hint : Try the case m = 2 first. Construct a homomorphism

A
(
K(
√
D )
)
−→ A(K)×A(D)(K)

with finite kernel and cokernel.

Exercise 3.F. Let A be an abelian variety such that Aut(A) contains a
copy of the mth roots of unity µm. Let P ∈ A and 1 6= ζ ∈ µm. Prove that

[ζ]P = P =⇒ [m]P = 0.

4. Background Material: Height Functions

For this section we set the following notation:
©2024, J.H. Silverman



4. Background Material: Height Functions 13

Definition 4.1 (Absolute Values on Number Fields). The standard set
of absolute values on Q is the set MQ consisting of one archimedean
absolute value

|α|∞ := max{α, −α},
and for each prime p, one non-archimedean absolute value

|α|p := p−r, where α = pra/b ∈ Q with a, b ∈ Z and gcd(ab, p) = 1.

Let K/Q be a number field. We let MK be the set of distinct absolute
values on K that extend the absolute values in MQ.

Definition 4.2. The valuation associated to an absolute value v ∈MK

is the function

v : K∗ −→ Z, v(α) = − log |α|v.
We sometimes extend the definition by setting v(0) =∞.

We state two standard results from algebraic number theory.

Proposition 4.3. Let L/KQ be number fields.

(a) [Product Formula] Let α ∈ K. Then∏
v∈MK

|α|[Kv :Qv ]
v =

{
1 if α 6= 0,

0 if α = 0.

(b) [Extension Formula] Let v ∈MK. Then

1

[L : K]

∑
w∈ML
w|v

[Lw : Qw] = [Kv : Qv].

Proof. See for example [48, II§1 and V§1]. �

Definition 4.4. The logarithmic Weil height on PN(K) relative to the
field K is the function

hK : Pn(K) −→ [0,∞),

hK
(
[α0, . . . , αn]

)
=
∑
v∈MK

[Kv : Qv] · log max
{
|α0|v, |α1|v, . . . , |αn|v

}
.

Definition 4.5. The absolute logarithmic Weil height on PN(K̄) is the
function

h : Pn(K̄) −→ [0,∞), h(P ) =
1

[L : Q]
hL(P ),

where L is any number field over which P is defined, i.e., any number
field for which we can write P = [α0, . . . , αn] with α0, . . . , αn ∈ L.
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14 Canonical Heights on Abelian Varieties

Proposition 4.6. (a) The Weil height hK is well-defined and non-
negative on PN(K).

(b) The Weil height h is well-defined and non-negative on PN(K̄).

Proof. (a) Let [α0, . . . , αN ] ∈ PN(K) and let γ ∈ K∗. Then the sum in
Definition 4.4 for [α0, . . . , αN ] and for [γα0, . . . , γαN ] differ by∑

v∈MK

[Kv : Qv] · log |γ|v = 0,

where the equality comes from taking the logarithm of the product
formula (Proposition 4.3(a)).

Now that we know that h(P ) doesn’t depend on the choice of ho-
mogeneous coordinates, we can start with P = [α0, . . . , αN ], choose a
non-zero coordinate αj, and divide all of the coordinates by αj. We
may thus assume that at least one of the coordinates of P is equal to 1.
Since |1|v = 1 for every v ∈MK , it follows that

log max
{
|α0|v, |α1|v, . . . , |αN |v

}
≥ 0,

so hK(P ) is a sum of non-negative terms. Hence hK(P ) ≥ 0.
(b) Let P = [α0, . . . , αN ] ∈ PN(K), and suppose that we view P as
lying in PN(L). Then

hL(P ) =
∑
w∈ML

[Lw : Qw] · log max
{
|α0|w, |α1|w, . . . , |αn|w

}
from Definition 4.4,

=
∑
v∈MK

∑
w∈ML
w|v

[Lw : Qw] · log max
{
|α0|w, |α1|w, . . . , |αn|w

}
=
∑
v∈MK

∑
w∈ML
w|v

[Lw : Qw] · log max
{
|α0|v, |α1|v, . . . , |αn|v

}
since αi ∈ K and w | v,

=
∑
v∈MK

log max
{
|α0|v, |α1|v, . . . , |αn|v

} ∑
w∈ML
w|v

[Lw : Qw]

=
∑
v∈MK

log max
{
|α0|v, |α1|v, . . . , |αn|v

}
· [Kv : Qv] · [L : K]

by the extension formula (Proposition 4.3(b)),

= [L : K] · hK(P ) from Definition 4.4.

Hence using [L : K] = [L : Q]/[K : Q], we find that

1

[L : Q]
hL(P ) =

1

[K : Q]
hK(P ).

This concludes the proof that the definition of the absolute height does
not depend on the choice of field.
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4. Background Material: Height Functions 15

Finally, the non-negativity of h(P ) follows from the non-negativity
of hK(P ) proven in (a). �

Definition 4.7. Let X be a smooth projective variety defined over K.
For each divisor D ∈ Div(X), we choose very ample divisors D1, . . . , Dr

and integers n1, . . . , nr so that

D ∼ n1D1 + · · ·+ nrDr, (4.1)

and for each 1 ≤ i ≤ r, we choose projective embeddings

fDi : X ↪−→ P`(Di)−1 (4.2)

as described in Definition 2.1. We then define the absolute logarithmic
Weil height function on X relative to the divisor D to be the function

hX,D : X(K̄) −→ R, hX,D(P ) =
r∑
i=1

nih
(
fDi(P )

)
.

Theorem 4.8 (Weil height machine). Let X be a smooth projective
variety defined over K. In the following, the implied O(1) constants
depend on the indicated quantities, as well as on the choice of particular
Weil height functions.6

(a) (Linear Equivalence) Let D,D′ ∈ Div(X) be a divisor satisfying

D′ ∼ D,

i.e., D and D′ are linearly equivalent. Then

hX,D′ = hX,D +OX,D,D′(1).

where as indicated, the implied bounds depend on X, D, and D′.
In particular, a Weil height hX,D is determined by X and D up
the a function that is bounded.

(b) (Functoriality) Let ϕ : X → Y be a morphism between two smooth
projective varieties, and let D ∈ Div(Y ). Then

hX,ϕ∗D = hY,D ◦ ϕ+OX,Y,ϕ.

(c) (Additivity) Let D1, D2 ∈ Div(X). Then

hX,D1+D2 = hX,D1 + hX,D2 +OX,D1,D2(1).

(d) (Finiteness—Northcott Property) Suppose that D is ample. Then
for all c, d > 0, the set{
P ∈ X(K̄) :

[
K(P ) : K

]
≤ d and hX,D(P ) ≤ c

}
is finite.

6In other words, if we say that there is a quantity that is OX,D(1), then it
is bounded by a quantity that depends on X and on the choice of Weil height
function hX,D as described in Definition 4.7.
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16 Canonical Heights on Abelian Varieties

(e) (Algebraic Equivalence) Let D′ ∈ Div(X) be a divisor satisfying

D′ ≡ D,

i.e., the divisors D and D′ are algebraically equivalent and suppose
that D is ample. Then7

lim
P∈X(K̄)

hX,D(P )→∞

hX,D′(P )

hX,D(P )
= 1.

(f) (Positivity) Let D ∈ Div(X) be an effective divisor.8 Then there
is a constant C3(D) so that

hX,D(P ) ≥ −C3(D) for all P ∈ X(K̄) r (base locus of D).

Remark 4.9. One way to view the height machine is that it trans-
lates geometry into arithmetic. Picard groups, i.e., divisors and their
linear equivalences, contain a lot of geometric information about vari-
eties, heights contain a lot of arithmetic information about algebraic
points on varieties, and the height maching translates relations between
divisor classes into relations between heights.

Remark 4.10. A helpful reformulation of the Weil height machine is
that it is the unique homomorphism

hX,· : Pic(X) −→ {functions X(K̄)→ R}
{bounded functions X(K̄)→ R}

that satisfies:

• Functoriality. Let ϕ : X → Y be a morphisms and D ∈ Div(Y ).
Then hX,ϕ∗D = hY,D ◦ ϕ+O(1).

• Normalization. Let h be the Weil height described in Defini-
tions 4.4 and 4.5, and let H ∈ Div(PN) be a hyperplane. Then
hPN ,H = h+O(1).

4.1. Heights over Function Fields. For this subsection, we set the
following notation:

k a field
C/k a smooth projective curve
k(C) the function field of C

7With more work, one can prove the stronger estimate
hX,D′ = hX,D +OX,D,D′

(√
|hX,D|

)
.

8A divisor D is effective if D =
∑
niDi, where all of the Di are irreducible

codimension-1 subvarieties and all of the ni are non-negative. The base locus of D
is the intersection of the supports of all of the effective divisors that are linearly
equivalent to D. For example, if D is very ample, then its base locus is empty.
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4. Background Material: Height Functions 17

The field k(C) is very similar to a number field, so we can define
height functions using k(C). This can be done with absolute values as
in Definition 4.1, but we will take a more geometric approach, using
the fact that each element α ∈ k(C) is a rational function on C. More
generally, any list of elements α0, . . . , αN ∈ k(C), not all 0, defines
both a point

α = [α0, . . . , αN ] ∈ PN
(
k(C)

)
and a k-morphism9

Pα : C −→ PN , Pα(γ) =
[
α0(γ), . . . , αN(γ)

]
.

Definition 4.11. The logarithmic Weil height on PN
(
k(C)

)
relative

to the field k(C) is the function10

hk(C) : Pn
(
k(C)

)
−→ [0,∞), hk(C)(α) = degP ∗αOPN (1).

The absolute logarithmic Weil height on PN
(
k(C)

)
is the function

h : PN
(
k(C)

)
−→ [0,∞), h(α) =

1[
k(Cα) : k(C)

]hk(Cα)(α),

where Cα → C is any finite cover such that we can write α using
coordinates in k(Cα).

Example 4.12. The Weil height for the field k(T ) ∼= k(P1) of ra-
tional functions is particularly easy to describe, since the PID k[T ]
plays the same role for k(T ) that the PID Z plays for Q. Thus
given α0(T ), . . . , αN(T ) ∈ k(T ), we can factor out common factors
in their numerators and find a least common denominator for their de-
nominators. In other words, we can find a non-zero β(T ) ∈ k(T ) so
that for 0 ≤ i ≤ N we have

γi(T ) := β(T )αi(T ) ∈ k[T ], and gcd
(
γ0(T ), . . . , γN(T )

)
= 1.

Then
hk(T )(Pa) = max

0≤i≤T
deg γi(T ).

In particular, the height of a rational function

α(T ) =
a(T )

b(T )
with a(T ), b(T ) ∈ k[T ] and gcd

(
a(T ), b(T )

)
= 1

is
h
(
α(T )

)
= max

{
deg a(T ), deg b(T

}
.

9In practice, we need to be a bit more careful when defining Pα(γ). Thus we
first choose an index i so that the quotient αj/αi is regular at γ for every j, and
then we define Pα(γ) to be

[
(α0/αi)(γ), . . . , (αN/αi)(γ)

]
.

10For those who prefer divisors to line bundles,we can also define hk(C) to be the

intersection index Pα(C) ·H of the image of C with a generic hyperplane H.
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18 Canonical Heights on Abelian Varieties

Example 4.13. Let α ∈ k(C), or equivalently, let [α, 1] ∈ P1
(
k(C)

)
.

Then α defines a map
α : C −→ P1,

and the height of α is

hk(C)(α) = hk(C)

(
[α, 1]

)
= deg

(
α : C → P1

)
.

Remark 4.14. If K/Q is a number field, then for any given bound B,
Northcott’s theorem (Theorem 4.8(d)) says that there are only finitely
many points in PN(K) whose height is smaller than c. This important
finiteness property is false for k(C) if k is an infinite field. Indeed,
if α ∈ k, then [α, 1] : C → P1 is the constant map, so

h
(
[α, 1]

)
= 0 for all α ∈ k.

Thus when working over a function field such as k(C), proving that a
set S of points is finite often requires two steps. First one shows that S
is a set has bounded height. Then one proves that S has some sort of
rigidity property that forces it to be finite.

Having defined the Weil height on PN
(
k(C)

)
, we can use Defini-

tion 4.7 to define the Weil height on smooth projective varieties X
defined over k(C), and then all of the properties of the Weil height de-
scribed in Theorem 4.8 are true except that, as noted in Remark 4.14,
the Northcott finiteness property may fail. In particular, we have the
following relationship between heights and degrees of maps.

Proposition 4.15. Let X be a projective variety, and let X → C
be a proper morphism whose generic fiber is a smooth projective vari-
ety X/k(C). Let D ∈ Div(X), and let D ∈ Div(X ) be the closure of D.
For each k(C)-rational point α ∈ X

(
k(C)

)
, we let Pα : C → X be the

associated section. Then the map

X
(
k(C)

)
−→ R, α 7−→ degP ∗αD,

is a Weil height function on X(
(
k(C)

)
associated to the divisor D.

Equivalently, if we fix a Weil height function hX,D on X(
(
k(C)

)
, then

degP ∗αD = hA,D(α) +O(1),

where the O(1) is independent of α.

4.2. Heights of (abelian) varieties. Let X/K be a (smooth projec-
tive) variety defined over K. We would like to define the complexity,
or height, of X/K. A naive definition would be that

h(X) =

(
the height of the coefficients of the
polynomials that are used to define X

)
.
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4. Background Material: Height Functions 19

There are a number of problems with this definition. First, even if X is
given with an embedding into projective space, there will generally be
many choices for the polynomials that generate the ideal of X. Second,
we’d prefer that the height of X not depend (too much) on the choice
of an embedding. Third, we want isomorphic varieties to have more-
or-less the same height. So here’s a less naive definition that probably
has the properties that we want:

h(X) = min
embeddings
ϕ:X↪→PN

min
generators f1, . . . , fn
for the ideal I(ϕ(X))

h
(
[f1, . . . , fn]

)
.

Here we are writing [f1, . . . , fn] to denote the point in some large pro-
jective space whose coordinates are the coefficients of the polynomi-
als f1, . . . , fn. Unfortunately, although this definition of h(X) captures
the arithmetic complexity of X, it is difficult to use in practice.

Example 4.16 (The Height of an Elliptic Curve). Every elliptic curve
E/Q has a Weierstrass model of the form

E : y2 = x3+Ax+B with A,B ∈ Z and gcd(A3, B2) 12th-power-free.

We can then define the height of E/Q to be h
(
[A,B, 1]

)
, although for

homogeneity reasons, people often use

h1(E/Q) = h
(
[A3, B2, 1]

)
.

More generally, for an elliptic curve E/K defined over a number field,
we look at all Weierstrass equations having integral coefficients and
define

h1(E/K) = min

{
h
(
[A3, B2, 1]

)
:
A,B ∈ RK and E is K-iso-
morphic to y2 = x3 + Ax+B

}
.

(4.3)
Continuing to look at elliptic curves, we search for a more intrinsic

measure of complexity. For example, we could use the height h
(
j(E)

)
of

the j-invariant of E. Unfortunately, this height doesn’t have the desired
finiteness property, since j(E) only classifies E up to K̄-isomorphism,
so there are infinitely many K-isomorphism classes of elliptic curves
with bounded j-height. This suggests adding a bit more data to the
height, for example, the primes of bad reduction. One can show that
if we define the height of E/K by

h2(E/K) = h
(
j(E)

)
+

∑
primes p such that

E has bad reduction at p

logNK/Q(p), (4.4)

then there there are only finitely many K-isomorphism classes of ellip-
tic curves with bounded height. Indeed, one can show that there are
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20 Canonical Heights on Abelian Varieties

positive constants so that these two heights are related by

C4h1(E/K) ≤ h2(E/K) ≤ C5h1(E/K),

see Exercise 4.H.

We are going to generalize (4.4) to abelian varieties. Let Ag denote
the moduli space of principally polarized abelian varieties of dimen-
sion g, fix an embedding Ag ↪→ PN into some projective space, and
let

hAg : Ag(Q̄) −→ [0,∞) (4.5)

be the Weil height associated to this embedding. We also write

j(A) ∈ Ag(Q̄) (4.6)

for the point in moduli space associated to a principally polarized
abelian varietyA/Q̄. (For example, if E is an elliptic curve, then j(E) ∈
A1 ⊂ P1 is the usual j-invariant of E.) It is tempting to define the
height of A to be the height of j(A), but j(A) only captures the Q̄-
isomorphism class of A. Hence all of the twists of A will have the
same j(A), which means that for a given number field K/Q, there
will be infinitely many A/K that are not K-isomorphic, yet have the
same j-value. We can deal with the issue by also measuring the primes
of bad reduction.

Definition 4.17. With the height hAg defined by (4.5) and the j-map
defined by (4.6), we define the height of a principally polarized abelian
variety A/K defined over a number field K to be

h(A/K) = hAg
(
j(A)

)
+

∑
0 6=p∈Spec(RK)

A has bad reduction at p

logNK/Q(p).

Supplementary Material 4.18 (Faltings’ height of an abelian variety). Faltings [29, 30] used
metrized line bundles to define a height function hF on the space of abelian varieties. For A/K

having everywhere semi-stable reduction, it satisfies∣∣∣hF (A)− hAg
(
j(A)

)∣∣∣ ≤ C6 log
(
hAg

(
j(A)

))
,

from which one sees that there are only finitely many semi-stable A/K with bounded hF (A). The
Faltings’ height function has nice functorial properties such as

hF (A×B) = hF (A) + hF (B) and hF (Â) = hF (A).

Faltings also proves a formula for the difference of the heights of isogenous abelian varieties in
terms of the arithmetic properties of the isogeny. This formula plays a crucial role in his proof of

Tate’s isogeny conjecture, which in turn he uses to prove the Shafarevich and Mordell conjectures.
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4. Background Material: Height Functions 21

Exercises for Section 4.

Exercise 4.A. Let P ∈ Pn(Q), and write P as

P = [a0, a1, . . . , an] with a0, . . . , an ∈ Z and gcd(a0, . . . , an) = 1.

Prove directly from the definition 4.11 that

h(P ) = log max
{
|a0|, |a1|, . . . , |an|

}
.

Exercise 4.B. (a) Prove the product formula (Proposition 4.3(a)), first
for K = Q, and then for arbitrary number fields.

(b) Prove the extension formula (Proposition 4.3(b)).

Exercise 4.C. Let C/K be a smooth projective curve, and let D1, D2 ∈
Div(C) be divisors with deg(D1) ≥ 1. Prove that

lim
t∈C(K̄)
hC(t)→∞

hC,D2(t)

hC,D1(t)
=

degD2

degD1
.

Hint : Divisors on a curve C are algebraically equivalent if and only if they
have the same degree.

Exercise 4.D. Let β ∈ Q̄ with β 6= 0, and fix a minimal polynomial

Fβ(X) = a0X
d + a1X

d−1 + · · ·+ ad ∈ Z[X] with gcd(a0, . . . , ad) = 1.

Factor Fβ over C as

Fβ(X) = a0(X − β1)(X − β2) . . . (X − βd).
Prove that

h
(
[β, 1]

)
=

1

d

(
log |a0|+

d∑
i=1

max
{
|βi|, 1

})
.

Exercise 4.E. Let K be a number field, and let F (X) ∈ K[X] be a poly-
nomial of degree d ≥ 1 that factors completely over K, say

F (X) = a0X
d + a1X

d−1 + · · ·+ ad = (X − α1)(X − α2) . . . (X − αd).
Prove that

−d · log(2) ≤ h
(
[a0, . . . , ad]

)
−

d∑
i=1

h(αi) ≤ (d− 1) log(2).

This gives an explicit estimate relating the height of the coefficients of a
polynomial to the heights of its roots. Hint : Prove by induction on d a
similar estimate for each v ∈MK , and then sum over v ∈MK .

Exercise 4.F. Let m ≥ 2, let D ∈ Z be an integer that is mth-power-free,
and let

P = [1, α1, . . . , αN ] ∈ PN (Q̄)

be a point whose coordinates generate Q(D1/m), i.e.,

Q(α1, . . . , αN ) = Q(D1/m).
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22 Canonical Heights on Abelian Varieties

Prove that

h(P ) ≥ 1

2m− 2

(
1

m
log |D| −m logm

)
.

Hint : Try N = 1 and/or m = 2 first.

Exercise 4.G. Let K/Q be a number field, and let ∆ ∈ K∗. We define the
m-power free height of ∆ to be

h
(m)
K (∆) := min

β∈K∗
hK(βm ·∆).

Prove that11

h
(m)
K (∆) � logNK/Q

(
Disc

(
K(∆1/m)

/
K
))

for all ∆ ∈ K∗,

where the implied constants may depend on K and m.

Exercise 4.H. Let h1 and h2 be the two height functions on the space
of elliptic curves defined by (4.3) and (4.3). Prove that there are positive
constants C11 and C12 so that for all number field E/K and all elliptic
curves E/K we have

C11h1(E/K) ≤ h2(E/K) ≤ C12h1(E/K).

Exercise 4.I. (a) Give an example of a dominant rational map

ϕ : P2 99K P2

such that functoriality (Theorem 4.8(b)) fails.
(b) Let ϕ : P2 99K P2 be a dominant rational map of degree d. Prove

that there are constants C13(ϕ) > 0 and C14(ϕ) ≥ 0 and a non-empty
Zariski open set Uϕ ⊂ P2 so that12

h
(
ϕ(P )

)
≥ C13(ϕ) · h(P )− C14(ϕ) for all P ∈ U(K̄). (4.7)

(c) Prove that the constant C13 in (b) may be chosen to depend only on
the degree of ϕ.

(d) Generalize (c) to PN with a constant C13(N, d) that depends only on
the dimension of PN and the degree d of the map ϕ.

(e) The height expansion ratio for degree d maps of PN is, roughly speaking,
the best possible value for the constant C13(N, d) in (d). More precisely,
we define

µd(PN ) = inf
ϕ:PN99KPN
ϕ dominant
deg(ϕ)=d

sup
∅6=U⊂PN

lim inf
P∈U(Q̄)
h(P )→∞

h
(
ϕ(P )

)
h(P )

.

11The notation f(x) � g(x) means that there are positive constants that may
depend on f and g so that

C7f(x)− C8 ≤ g(x) ≤ C9f(x) + C10 for all x.
12If ϕ is a morphism, then Theorem 4.8 says that we may take C13(ϕ) = deg(ϕ).

©2024, J.H. Silverman



5. Canonical heights: Construction and Basic Properties 23

Let d ≥ 2. Prove that

µd(P1) = d and µd(PN ) ≤ 1

dN−1
for N ≥ 2.

(f) Find a formula for µd(PN ) as a function of N and d. Hint : For N ≥ 2,
this is an open problem!! See [89].

5. Canonical heights: Construction and Basic Properties

Definition 5.1. Let A be an abelian variety, and let D ∈ Div(A) be
a divisor. We say that

D is symmetric if [−1]∗D ∼ D.
D is anti-symmetric if [−1]∗D ∼ −D.

Theorem 5.2. (Néron–Tate) Set the following notation:

K a number field or a function field, with algebraic closure K.
A/K an abelian variety defined over K.
D ∈ Div(A), a divisor that is either symmetric or anti-symmetric.

ρ the quantity ρ =

{
2 if D is symmetric,

1 if D is anti-symmetric.

P ∈ A(K̄), a K̄-rational point on A.

(a) The following limit converges :

ĥA,D(P ) := lim
n→∞

1

2ρn
hA,D

(
[2n](P )

)
. (5.1)

(b) There is a constant C(A,D) so that limit defined in (a) satisfies∣∣∣ĥA,D(P )− hA,D(P )
∣∣∣ ≤ C(A,D) for all P ∈ A(K̄). (5.2)

More precisely, the constant depends on the choice of the Weil
height function hA,D.

(c) For all m ∈ Z, the limit defined in (a) satisfies

ĥA,D
(
[m](P )

)
= mρĥA,D(P ) for all P ∈ A(K̄).

(d) Let D,D′ ∈ Div(A). Then

D ∼ D′ =⇒ ĥA,D = ĥA,D′ .

In other words, the function ĥA,D depends only on the line bun-
dle L(D) ∈ Pic(A).

Proof. (a) We give Tate’s proof via a telescoping sum. The theorem
of the cube (Corollary 3.8 with m = 2) tells us that in general we
have [2]∗D ∼ 3D + [−1]∗D, so the assumption that D is symmetric,
respectively anti-symmetric, yields

[2]∗D ∼ 2ρD. (5.3)
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24 Canonical Heights on Abelian Varieties

We start with the estimate

hA,D ◦ [2] = hA,[2]∗D +O(1) functoriality of heights (Theorem 4.8(b)),

= hA,2ρD +O(1) from (5.3) and the linear equivalence
property of heights (Theorem 4.8(a)),

= 2ρhA,D +O(1) additivity of heights (Theorem 4.8(c))

We rewrite this big-O estimate as∣∣∣hA,D([2](Q)
)
− 2ρhA,D(Q)

∣∣∣ ≤ C(A,D) for all Q ∈ A(K), (5.4)

where the constant depends on A and D, but is independent of Q ∈
A(K).

We are going to show that the sequence(
2−ρnhA,D

(
[2n](P )

))
n≥0

(5.5)

is a Cauchy sequence. To do this, we let n ≥ m ≥ 0 and compute∣∣∣∣ 1

2ρn
hA,D

(
[2n](P )

)
− 1

2ρm
hA,D

(
[2m](P )

)∣∣∣∣
=

∣∣∣∣∣
n−1∑
i=m

(
1

2ρ(i+1)
hA,D

(
[2i+1](P )

)
− 1

2ρi
hA,D

(
[2i](P )

))∣∣∣∣∣ telescoping sum,

=
n−1∑
i=m

1

2ρ(i+1)

∣∣∣hA,D([2i+1](P )
)
− 2ρhA,D

(
[2i](P )

)∣∣∣ triangle inequality,

≤
n−1∑
i=m

1

2ρ(i+1)
· C(A,D) using (5.4) with Q = [2i](P ),

≤ C(A,D)

2ρm(2ρ − 1)
. (5.6)

The upper bound C(A,D)/2m in (5.6) goes to 0 as m → ∞ (with
n ≥ m), which completes the proof that the sequence (5.5) is Cauchy,
and hence that it converges.

(b) Taking m = 0 in (5.6) gives∣∣∣∣ 1

2ρn
hA,D

(
[2n](P )

)
− hA,D(P )

∣∣∣∣ ≤ C(A,D)

2ρ − 1
, (5.7)

and then letting n→∞ gives (5.2).
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(c) We compute

ĥA,D
(
[m](P )

)
= lim

n→∞

1

2ρn
hA,D

(
[2nm](P )

)
by definition of ĥA,D,

= lim
n→∞

1

2ρn
hA,D

(
[m] ◦ [2n](P )

)
= lim

n→∞

1

2ρn

(
hA,[m]∗D

(
[2n](P )

)
+OA,D,m(1)

)
from Theorem 4.8(b),

= lim
n→∞

1

2ρn

(
hA,mρD

(
[2n](P )

)
+OA,D,m(1)

)
from Theorem 4.8(a) and Corollary 3.8,

= lim
n→∞

1

2ρn

(
mρhA,D

(
[2n](P )

)
+OA,D,m(1)

)
from Theorem 4.8(c),

= mρĥA,D(P ) since m ≥ 2 and OA,D,m(1) is independent of n.

(d) Theorem 4.8(a) tells us that there is a constant C(A,D,D′) so that∣∣∣hA,D(Q)− hA,D′(Q)
∣∣∣ ≤ C(A,D,D′) for all Q ∈ A(K̄).

We substitute Q = [2n](P ), divide by 2ρn, and let n→∞, which gives

the desired result ĥA,D(P ) = ĥA,D′(P ). �

Definition 5.3. Let K be a number field or a function field, let A/K be
an abelian variety defined overK, letD ∈ Div(A), and letD− = [−1]∗D.
We define the canonical height

ĥA,D : A(K) −→ R
by

ĥA,D(P ) :=
1

2
ĥA,D+D−(P ) +

1

2
ĥA,D−D−(P ),

where ĥ for the symmetric divisor D+D− is defined by (5.1) in Propo-

sition 5.2(a) with ρ = 2, and ĥ for the anti-symmetric divisor D −D−
is defined by (5.1) in Proposition 5.2(a) with ρ = 1. We note that The-

orem 5.2(d) implies that the canonical height function ĥA,D depends

only on the linear equivalence class of D, i.e., ĥA,D depends only on the
associated line bundle L(D)

Theorem 5.4. (Néron–Tate) Let K be a number field or a function
field, let A/K be an abelian variety defined over K, let D ∈ Div(A) be
a symmetric divisor, and let

ĥA,D : A(K̄) −→ R
be the associated canonical height function.
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(a) The function ĥA,D is a quadratic form13 on A(K̄).
(b) Number Field Case. Let K be a number field, and assume

that D is an ample symmetric divisor.
(b-1) Let P ∈ A(K). Then

• ĥA,D(P ) ≥ 0.

• ĥA,D(P ) = 0 if and only if P ∈ A(K)tors.

(b-2) ĥA,D is a positive definite quadratic form on A(K)/A(K)tors.

(b-3) More generally, ĥA,D extends to a positive definite quadratic
form14 on A(K)⊗ R.

(c) Function Field Case. Let K = k(C) be a function field, let
(B/k, ϕ) be a K/k-trace15 for A/K, and assume that D is an
ample symmetric divisor.
(c-1) Let P ∈ A(K). Then

• ĥA,D(P ) ≥ 0.

• ĥA,D(P ) = 0 if and only if P ∈ ϕ(B(k)) + A(K)tors.

(c-2) ĥA,D is a positive definite quadratic form on

A(K)/
(
ϕ(B(k)) + A(K)tors

)
;

(c-3) More generally, ĥA,D extends to a positive definite quadratic
form on (

A(K)/ϕ(B(k))
)
⊗ R.

Proof. (a) We already know from Theorem 5.2(c) and our assumption

that D is symmetric that ĥA,D
(
[m]P

)
= m2ĥA,D(P ). So it remains to

prove bilinearity of the pairing on A(K) defined by the formula

A(K̄)×A(K̄) −→ R, (P,Q) 7−→ ĥA,D(P +Q)− ĥA,D(P )− ĥA,D(Q).

13In general, if R is a commutative ring and M and N are R-modules, then a
quadratic form from M to N is a function Q : M → N such that Q(rα) = r2Q(α)
and such that the following map is R-bilinear:

M ×M −→ N, (α, α′) = Q(α+ α′)−Q(α)−Q(α′).
If N = R, then Q is positive definite if Q(α) = 0 implies that α = 0.

14See Section 6 for details on how to extend the quadratic form ĥA,D from A(K)
to A(K)⊗ R.

15See Definition 3.22 in Section 3.2 for the definition of the trace.
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By symmetry of the definition, it suffices to show that the pairing is
linear in the first variable. We thus need to prove that

ĥA,D(P +Q+R)− ĥA,D(P +Q)− ĥA,D(R)

?
=
(
ĥA,D(P +R)− ĥA,D(P )− ĥA,D(R)

)
+
(
ĥA,D(Q+R)− ĥA,D(Q)− ĥA,D(R)

)
.

Moving everything to one side of the equation, we need to prove that

ĥA,D(P +Q+R)− ĥA,D(P +Q)− ĥA,D(P +R)− ĥA,D(Q+R)

+ ĥA,D(P ) + ĥA,D(Q) + ĥA,D(R)
?
= 0. (5.8)

We apply the theorem of the cube (Theorem 3.7) to the three pro-
jection maps

π1, π2, π3 : A3 −→ A.

This yields the divisor class relation

(π1 + π2 + π3)∗D − (π1 + π2)∗D − (π1 + π3)∗D − (π2 + π3)∗D

+ π∗1D + π∗2D + π∗3D ∼ 0. (5.9)

For notational convenience, we let

π123 = π1 + π2 + π3 and πij = πi + πj for i, j ∈ {1, 2, 3}.
This allows us to rewrite (5.9) more succintly as

π∗123D − π∗12D − π∗13D − π∗23D + π∗1D + π∗2D + π∗3D ∼ 0. (5.10)

Applying the linear equivalence part of the height machine (Theo-
rem 4.8(a)) to the linear equivalence (5.10), we obtain

hA,π∗123D
(P,Q,R)

− hA,π∗12D
(P,Q,R)− hA,π∗13D

(P,Q,R)− hA,π∗23D
(P,Q,R)

+ hA,π∗1D(P,Q,R) + hA,π∗2D(P,Q,R) + hA,π∗3D(P,Q,R) = O(1).

We stress that the O(1) is independent of the point (P,Q,R) ∈ A3(K).
We next use functoriality of heights (Theorem 4.8(b)) to get

hA,D
(
π123(P,Q,R)

)
− hA,D

(
π12(P,Q,R)

)
− hA,D

(
π13(P,Q,R)

)
− hA,D

(
π23(P,Q,R)

)
+ hA,D

(
π1(P,Q,R)

)
+ hA,D

(
π2(P,Q,R)

)
+ hA,D

(
π3(P,Q,R)

)
= O(1).

Using the definition of the various π maps, this becomes

hA,D(P +Q+R)− hA,D(P +Q)− hA,D(P +R)− hA,D(Q+R)

+ hA,D(P ) + hA,D(Q) + hA,D(R) = O(1).
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Now all that remains is to replace

(P,Q,R) with
(
[2n](P ), [2n](Q), [2n](R)

)
,

divide by 4n, and let n→∞. Then the Weil heights become canonical
heights, while the O(4−n) disappears, which completes the proof of the
desired result (5.8).
(b-1) We choose an integer m ≥ 1 so that mD is very ample, and we
let fmD : A ↪→ P`(D)−1 be a projective embedding associated to mD as
described in Definition 2.1. Then Definition 4.7 says that

hA,mD(P ) = h
(
fD(P )

)
is a Weil height associated tomD. Additivity of heights (Theorem 4.8(c))
gives

hA,D(P ) =
1

m
· h
(
fD(P )

)
+O(1),

and Proposition 4.6(b) tells us that h
(
fD(P )

)
≥ 0. It follows that there

is a constant C15 ≥ 0 so that

hA,D(P ) ≥ −C15 for all P ∈ A(K).

Replacing P with [2n]P , dividing by 4n, and letting n→∞ yields

ĥA,D(P ) = lim
n→∞

4−nhA,D
(
[2n]P

)
≥ lim

n→∞
−4−nC15 = 0.

This proves the first assertion that ĥA,D is a non-negative function.
For the second assertion, we start with the computation

P ∈ A(K)tors =⇒ [n]P = 0 for some n ≥ 1,

=⇒ 0 = ĥA,D(0) = ĥA,D
(
[n]P

)
= n2ĥA,D(P )

=⇒ ĥA,D(P ) = 0.

Conversely, suppose that ĥA,D(P ) = 0. Then for all n ≥ 0 we have

ĥA,D
(
[n]P

)
= n2ĥA,D(P ) = 0.

We know that the canonical height ĥA,D and the Weil height hA,D differ
by a bounded amount (Theorem 5.2(b)), so we can find a constant C16

so that

hA,D(Q) ≤ ĥA,D(Q) + C16 for all Q ∈ A(K).

In particular, putting Q = [n]P yields

hA,D
(
[n]P

)
≤ C16 for all n ≥ 0.

Hence {
[n]P : n ≥ 0

}
⊆
{
Q ∈ A(K) : hA,D(Q) ≤ C16

}
. (5.11)
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We are given that the divisor D is ample, so the finiteness property
of heights (Theorem 4.8(d)) tells us that sets of bounded D-height are
finite. Applying this fact to (5.11) implies that{

[n]P : n ≥ 0
}

is a finite set,

so by the pigeon-hole principle, we can find integers n2 > n1 such that
[n2]P = [n1]P . Hence

[n2 − n1]P = 0,

so P ∈ A(K)tors.
(b-2) Let P ∈ A and T ∈ Ators, and choose n ≥ 1 so that [n]T = 0.
Then

ĥA,D(P + T ) = n−2ĥA,D
(
[n](P + T )

)
= n−2ĥA,D

(
[n]P + [n]T

)
= n−2ĥA,D

(
[n]P

)
= ĥA,D(P ).

This proves that ĥA,D is well-defined on the quotient A(K)/A(K)tors,

and we know from (a) that ĥA,D is a quadratic form. Further, it follows

from (b-1) that that ĥA,D is non-negative, and that when viewed as a

function on A(K)/A(K)tors, it vanished only at 0. Hence ĥA,D is a
positive definite quadratic form on A(K)/A(K)tors.
(b-3) We refer the reader to [39, Proposition B.5.3(b)] for the proof.

We also note that the postive definiteness of ĥA,D onA(K)⊗ R is not an
immediate consequence of its positive definiteness on A(K)/A(K)tors;
see Exercise 5.D.
(c) Much of the proof in the function field case mirrors the number
field proof. The primary difference arises from the fact that the field K
may have infinitely many elements of bounded height. Indeed, this
will always be the case if the base field k is infinite, since elements of k
have height 0; see Remark 4.14. However, one can show that on an
abelian variety A/k(C), infinite sets of bounded height come only from
the presence of points “defined over the base field k.” More precisely,
if D is an ample divisor, then

Image
({
P ∈ A(

(
k(C)

)
: hA,D(P ) ≤ T

}
−→ A

(
k(C)

)
/ϕ
(
B(k)

))
is finite. (5.12)

The finiteness statement (5.12) is used in the proof of the function
field Mordell–Weil theorem (Theorem 3.25) and in proving properties
of the canonical height in the function field setting. We do not include
a proof (5.12), but refer the reader to [47, Chapter 6] for a proof in
a very general setting, and to [85, Chapter III] for the simpler elliptic
surface case. �
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Definition 5.5. Let K be a number field or a function field with
algebraic closure K̄, let A/K be an abelian variety defined over K,
and let D ∈ Div(A) be a divisor. The Néron–Tate pairing (or canonical
height pairing) is the function16

〈 · , · 〉A,D : A(K̄)× A(K̄) −→ R,

〈P,Q〉A,D =
1

2

(
ĥA,D(P +Q)− ĥA,D(P )− ĥA,D(Q)

)
.

Definition 5.6. Let K be a number field or a function field K = k(C),
let A/K be an abelian variety defined over K, let D ∈ Div(A) be an
ample symmetric divisor, and let P1, . . . , Pr ∈ A(K) be a set of points.
The Néron–Tate regulator of P1, . . . , Pr is the quantity

RegD(P1, . . . , Pr) = det
(
〈Pi, Pj〉A,D

)
1≤i,j≤r

.

Let P1, . . . , Pr ∈ A(K) be a basis for the appropriate torsion-free
finitely generated abelian group, i.e.,

SpanZ(P1, . . . , Pr)

=

{
A(K)/A(K)tors if K is a number field,

A(K)/
(
ϕ(B(k)

)
+ A(K)tors

)
if K is a function field,

where (B/k, φ) is the K/k-trace in the function field case. We then
define the Néron–Tate regulator of A/K to be

RegD(A/K) = RegD(P1, . . . , Pr).

(If r = 0, we set RegD(A/K) = 1.) We note that Theorem 5.4(b)
and (b′) tell us that RegD(A/K) > 0.

Supplementary Material 5.7 (Values of the canonical height). The algebraic properties of ca-
nonical heights on abelian varieties over number fields are largely unknown. One might guess that

if P ∈ A(K) is a non-torsion point and D is an ample divisor, then ĥA,D(P ) and exp
(
ĥA,D(P )

)
are transcendental over Q, but there does not seem to be even a single example in which it is
known that one of these values is not in Q. More generally, one might ask:

Question 5.8. Let K/Q be a number field, let A1/K, . . . , An/K be geometrically simple non-
isogenous abelian varieties, letD1, . . . , Dn be ample divisors onA1, . . . , An, and for each 1 ≤ i ≤ n,
let Pi,1, . . . , Pi,ri ∈ Ai(K) be Z-linearly independent points. Is it true that the transcendence

degree of

K
(
ĥAi,Di (Pi,j) : 1 ≤ i ≤ n, 1 ≤ j ≤ ri

)
over K equals

n∑
i=1

ri ?

Ditto with exp(ĥ), or even adjoining both ĥ and exp(ĥ) values.

Supplementary Material 5.9 (Canonical heights of subvarieties of an abelian variety). We

have defined the canonical height of a point on an abelian variety. Philippon [73, 74, 75] has shown
how to define more generally the canonical height on an arbitrary subvariety of an abelian variety.
Let D ∈ Div(A) be a very ample symmetric divisor with an associated embedding ϕD : A ↪→ PN ,

16We include the factor of 1
2 so that 〈P, P 〉A,D = ĥA,D(P ).
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let X ⊂ A be a subvariety, and let GX = {P ∈ A : X + P = X} be the stabilizer of X. Then the

limit

ĥA,D(X) := lim
n→∞

#
(
A[n] ∩GX

)
n2 dim(X)+2

· h
(
ϕD
(
[n]X

))
exists, and the resulting function has the following properties:

(a) ĥA,mD(X) = mdim(X)+1ĥA,D(X).

(b) ĥA,D(X + T ) = ĥA,D(X) for all T ∈ Ators.

(c) Let α ∈ End(A) satisfy α∗D ∼ qD. Then

ĥA,D
(
α(X)

)
=

qdim(X)+1

#
(
ker(α) ∩GX

) · ĥA,D(X).

(d) ĥA,D(X) = 0 if and only if there exist an abelian subvariety B ⊆ A and a torsion point T ∈
Ators such that X = B + T .

See [39, Section F.2] for further information and pointers to the literature.

Supplementary Material 5.10 (Polarized dynamical systems). The theory of canonical heights

can be generalized to iterates of maps on more general varieties [9]. A polarized dynamical system

is a triple (X,ϕ,D) consisting of a smooth projective variety X/Q̄, a finite morphism ϕ : X → X,
and a divisor D ∈ Div(X)⊗R satisfying ϕ∗D ∼ κD for some real number κ > 1, where ∼ denotes

linear equivalence. The canonical height associated to ϕ and D is the function ĥX,ϕ,D : X(Q̄)→ R
defined by the limit

ĥX,ϕ,D(P ) = lim
n→∞

1

κn
hD
(
ϕ◦n(P )

)
.

The telescoping sum argument described in Theorem 5.2(a) carries over to this more general
setting, and the proofs of Theorem 5.2(b) and (c) yield

ĥX,ϕ,D(P ) = hX,D(P ) +Oϕ,D(1) and ĥX,ϕ,D
(
ϕ(P )

)
= (degϕ)ĥX,ϕ,D(P ) +Oϕ,D(1)

If D is ample, then ĥX,ϕ,D(P ) = 0 if and only if P is preperiodic for ϕ.

Exercises for Section 5.

Exercise 5.A. Let P,Q ∈ A(K).

(a) Prove that

P −Q ∈ A(K)tors =⇒ ĥA,D(P ) = ĥA,D(Q).

(b) Let K/Q be a number field. Is the converse to (a) true? I do not know
any counterexamples!

Exercise 5.B. Let A/K be an abelian variety, and let D ∈ Div(A) be an
anti-symmetric divisor, i.e., [−1]∗D ∼ −D. Prove that the map

ĥA,D : A(K̄) −→ R

is linear, i.e., prove that ĥA,D(P +Q) = ĥA,D(P ) + ĥA,D(Q).

Exercise 5.C. Let A/K be an abelian variety, and let D ∈ Div(A) be a
(not necessarily symmetric or anti-symmetric) divisor on A.

(a) Prove that the Néron–Tate pairing 〈 · , · 〉A,D as given in Definition 5.5
is a symmetric bilinear pairing.

(b) Let D,D′ ∈ Div(A). Prove that

〈 · , · 〉A,D+D′ = 〈 · , · 〉A,D + 〈 · , · 〉A,D′ .
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(c) Define the symmetrization of D to be

Dσ :=
1

2

(
D + [−1]∗D

)
.

Prove that Dσ is symmetric, and that

〈 · , · 〉A,Dσ = 〈 · , · 〉A,D.

(In fancier terminology, this shows that the Néron–Tate pairing for D
depends on only the algebraic equivalence class of D, i.e., on the image
of D in the Néron–Severi group NS(A).)

Exercise 5.D. . Consider the map

q : Z[
√

2] −→ R, q(a+ b
√

2) = |a+ b
√

2|2,

where we view Z[
√

2] as a free Z-module of rank 2.

(a) Prove that q is a positive definite quadratic form on Z[
√

2].
(b) Prove that the extension of q to Z[

√
2]⊗Z R is not positive definite.

Exercise 5.E. Let A/K and B/K be abelian varieties, let ϕ : B → A an
isogeny, and let D ∈ Div(A). Prove that

ĥA,D
(
ϕ(P )

)
= ĥB,ϕ∗D(P ) for all P ∈ B(K̄).

Exercise 5.F. We fix an ample divisor H ∈ Div(A), and we use H to define
the Rosatti involution

End(A)Q −→ End(A)Q, α 7−→ α′ := ϕ−1
H ◦ α̂ ◦ ϕH ,

and a map

NS(A)Q −→ End(A)Q, D 7−→ ϕ−1
H ◦ ϕD;

see Definition 3.18. Prove that the canonical height pairing satisfies the
following two formulas:

(a)
〈
α(P ), Q

〉
A,D

=
〈
P, α′(Q)

〉
A,H

.

(b) 〈P,Q〉A,D =
〈
P, ΦD(Q)

〉
A,H

.

(These formulas are proven in [5, Proposition 3] and [43, Propositions 27 & 28],
where they are then applied to solve various problems.)

Exercise 5.G. Learn how to compute canonical heights on elliptic curves
using a computer algebra system such as Magma, Sage, or PARI-GP. Hint : If
you ask ChatGPT “How do I compute the canonical height on an elliptic
curve using XXX,” it will give you some sample code that may or may not
actually work.

Exercise 5.H. This exercise asks you to compute some canonical heights.
Feel free to use a computer algebra system; see Exercise 5.G. We consider
the elliptic curve

E : y2 = x3 + 17
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and the points

P = (−2, 3), Q = (2, 5), R = (−1, 4),

S = (8, 23), T = (52, 375), U = (5234, 378661),

V =

(
94

25
,
1047

125

)
, W =

(
19

25
,
522

125

)
.

Verify that P,Q, . . . ,W are points in E(Q).

(a) Compute the canonical heights of the points P,Q, . . . ,W .
(b) Compute the ratios

ĥE(Q)

ĥE(P )
,

ĥE(R)

ĥE(P )
,

ĥE(S)

ĥE(P )
,

ĥE(W )

ĥE(P )
.

Draw some conclusions and check that your conclusions are correct.
(c) Compute the 2-by-2 height pairing matrix for P and Q and take its

determinant. What can you conclude?
(d) Compute the 3-by-3 height pairing matrix for P , Q, and U and take

its determinant. What can you conclude? Verify your conclusion with
an explicit algebraic formula.

6. Applications to Counting Points

For this section we fix the following notation:

K/Q a number field.
A/K an abelian variety of dimension g ≥ 1.
D ∈ DivK(A), an ample symmetric divisor.

ĥA,D the absolute logarithmic canonical height on A(K̄).
〈 · , · 〉A,D the associated canonical height pairing.

r the rank of the Mordell–Weil group A(K).

The Mordell–Weil group A(K) is a finitely generated abelian group,
so we can create an R-vector space by tensoring with R. We denote
this vector space by

A(K)R := A(K)⊗ R ∼= Rr.

It has dimension r, where r = rankA(K). The canonical height pair-
ing (5.5) may be extended to the R-vector space A(K)R as follows.
Every element of A(K)R is a linear combination of elements of the
form P ⊗ a with P ∈ A(K) and a ∈ R. Then for any Pi, Qj ∈ A(K)
and ai, bj ∈ R, we define〈

r∑
i=1

Pi ⊗ ai,
r∑
j=1

Qj ⊗ bj

〉
A,D

:=
r∑
i=1

r∑
j=1

aibj〈Pi, Qj〉A,D.
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Alternatively, let P1, . . . , Pr ∈ A(K) be generators for the free group

A(K)/A(K)tors
∼= Zr.

Then {P1, . . . , Pr} is a basis for the R-vector space A(K)R, and we use
the matrix of real numbers(

〈Pi, Pj〉A,D
)

1≤i,j≤r

to define a bilinear form on A(K)R relative to this basis.
It is important to stress that the canonical height pairing on A(K) is

defined intrinsically in terms of the geometry and arithmetic of A(K)
and D; its definition does not depend on a choice of basis. So the
pairing on A(K)R is similarly intrinsic and does not depend on the
choice of basis.17

Theorem 5.4(b) tells us that the associated quadratic form on A(K)R
is positive definite, and thus that the image of A(K) in A(K)R is a
discrete subgroup (lattice) relative to this quadratic form. We set the
(non-standard) notation

A(K)Z := Image
(
A(K) −→ A(K)R

)
for the Mordell–Weil lattice, so we have an exact sequence

0 −→ A(K)tors −→ A(K) −→ A(K)Z −→ 0,

and we define

‖ · ‖A,D : A(K)R −→ R, ‖P‖A,D =
√
〈P, P 〉A,D,

for the norm on the vector space A(K)R associated to the canonical
height pairing.

It’s now time to take advantage of these constructions to give a strong
counting result for the points in A(K).

Theorem 6.1. (Néron) Fix a Weil height hA,D associated to an ample
symmetric divisor D, and define a point counting function by

N
(
A(K), hA,D, T

)
:= #

{
P ∈ A(K) : hA,D(P ) ≤ T

}
.

Let r = rankA(K). Then there is a constant α(A/K,D) > 0 such that

N
(
A(K), hA,D, T

)
= α(A/K,D)T r/2 +O(T (r−1)/2) as T →∞.

17In general, a bilinear form B : V × V on a vector space may be represented
by a matrix

(
B(vi,vj)

)
after we choose a basis v1, . . . ,vr for V . But B doesn’t

depend on the choice of basis; and conversely, a matrix only determines a bilinear
form on V after we specify a basis.
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More precisely, we may take

α(A/K,D) = #A(K)tors ·
πr/2Γ(r/2 + 1)

RegD(A/K)1/2
,

where we note that πr/2Γ(r/2 + 1) is the volume of the unit ball in Rr.

Proof Sketch. We first note that the counting functions for the given
Weil height hA,D and the associated canonical height ĥA,D are closely

related, since Theorem 5.2(b) tells us that the difference ĥA,D − hA,D
is bounded. It follows from Exercise 6.A that it thus suffices to prove
the theorem for the counting function N

(
A(K), ĥA,D, T

)
associated to

the canonical height.
The kernel of the map

A(K) −→ A(K)Z

is A(K)tors, and we know from Exercise 5.A that

P ≡ Q (mod A(K)tors) =⇒ ĥA,D(P ) = ĥA,D(Q).

It follows that each point in A(K)Z corresponds to #A(K)tors points
having the same canonical height in A(K), so we find that

N
(
A(K), ĥA,D, T

)
= #A(K)tors · N

(
A(K)Z, ĥA,D, T

)
= #A(K)tors · N

(
A(K)Z, ‖ · ‖2

A,D, T
)

= #A(K)tors · N
(
A(K)Z, ‖ · ‖A,D, T 1/2

)
.

In summary, we are given the following material:

A(K)R = an r-dimensional real vector space.

A(K)Z = a rank r-lattice in A(K)R.

‖ · ‖A,D = ĥA,D( · )1/2 = a Euclidean norm on A(K)R.

RegD(A/K)1/2 = the volume of a fundamental
domain for A(K)Z in A(K)R.

And we want to count the number of points in the lattice whose norm
is smaller than T 1/2. This is now a lattice point counting problem that
has nothing to do with abelian varieties or height functions, so the
following result (Proposition 6.2) completes the proof. �

Proposition 6.2. Let V be an r-dimensional R-vector space, let ‖ · ‖
be a Euclidean norm on V , let L ⊂ V be a lattice with fundamental
domain FL, and let B :=

{
v ∈ V : ‖v‖ ≤ 1

}
be the unit ball relative
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to the given norm. Then

#
{
v ∈ L : ‖v‖ ≤ T

}
=

Vol(B)

Vol(FL)
· T r +O(T r−1),

where Vol is the Lebesgue measure on V for some identification V ∼= Rr.

Proof Idea. Let B(T ) = {v ∈ V : ‖v‖ ≤ T} be the ball of radius T , so
we want to count

N (L, T ) := #
(
B(T ) ∩ L

)
.

We note that the vector space V is the disjoint union of the translated
fundamental domains FL+w as w ranges over L. Let d = supv∈FL ‖v‖
be the length of the longest vector in the fundamental domain FL. Then
one can check (left as an exercise for the reader) that

B(T − d) ⊆
⋃

w∈L, ‖w‖≤T

FL + w ⊆ B(T + d). (6.1)

Taking the volume of both sides and using the disjointedness of the
translated fundamental domains gives

Vol
(
B(T − d)

)
≤

∑
w∈L, ‖w‖≤T

Vol(FL + w) ≤ Vol
(
B(T + d)

)
.

The volume form is homogeneous and translation invariant, so

Vol
(
B(1)

)
(T − d)r ≤ N (L, T ) · Vol(FL) ≤ Vol

(
B(1)

)
(T + d)r.

Hence

N (L, T ) =
Vol
(
B(1)

)
Vol(FL)

T r +O(T r−1). �

Exercises for Section 6.

Exercise 6.A. This exercise is about abstract counting functions. Let S
be a set, let h : S → R a non-negative valued function, and let

N (S, h, T ) = #{α ∈ S : h(α) ≤ T}.
be the associated counting function. Suppose that there are real num-
bers A > 0 and n ≥ 1 such that

N (S, h, T ) = ATn +O(Tn−1) as T →∞.

Now let h′ : S → R be another non-negative valued function such that there
is a constant C = C(S, h, h′) with the property that∣∣h(α)− h′(α)

∣∣ ≤ C for all α ∈ S.

Prove that
N (S, h′, T ) = ATn +O(Tn−1) as T →∞,

where A and n are the same as for h, but the big-O constant will change
and is allowed to depend on C.
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Exercise 6.B. Prove the inclusions (6.1).

7. Local Canonical Heights

We recall that the height of a point P = [α0, . . . , αn] ∈ Pn(K) in
projective space is defined (Definition 4.4) as a sum

hK
(
[α0, . . . , αn]

)
=
∑
v∈MK

[Kv : Qv] · log max
{
|α0|v, |α1|v, . . . , |αn|v

}
over the absolute values on K. Thus we might say that the “global
height” h(P ) is a weighted sum of “local heights”

log |P |v = log max
{
|α0|v, |α1|v, . . . , |αn|v

}
.

However, we see immediately that there is a problem with this defini-
tion, because log |P |v is not a function of P . It depends on a choice of
homogeneous coordinates for P . It is only after taking the sum that
the product formula (Proposition 4.3) eliminates the dependence on
that choice.

So we take a different approach via measuring the v-adic distance
from points to hypersurfaces. Let D ⊂ Pn be an irreducible divisor
given by the vanishing F (x) = 0 of a homogeneous polynomial of de-
gree d. Then for v ∈MK and for points P ∈ Pn(K), we define a v-adic
distance from P to D using the formula18

distv(P,D) = min

{∣∣∣∣ F (P )

x0(P )d

∣∣∣∣
v

,

∣∣∣∣ F (P )

x1(P )d

∣∣∣∣
v

, · · · ,
∣∣∣∣ F (P )

xn(P )d

∣∣∣∣
v

}
. (7.1)

We note that distv(P,D) does not depend on the choice of homogeneous
coordinates for P , and although it does depend on the choice of the
polynomial F , this dependence is not too severe. Indeed, if also D =
{F ′ = 0}, then there are positive constants such that

C17 distv(P, F ) ≤ distv(P, F
′) ≤ C18 distv(P, F ) for all P . (7.2)

Finally, since our heights are logarithmic, we define a v-adic local height
associated to the divisor D by the formula

λPn,D,v : Pn(Kv) −→ R ∪ {∞}, λPn,D,v(P ) = − log distv(P,D).

Thus λPn,D,v(P ) is large when P is v-adically close to D, and one can
check that

hPn,D(P ) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] · λPn,D,v(P ) +O(1) (7.3)

for P /∈ Support(D).

18If xi(P ) = 0 and F (P ) 6= 0, then we formally set
∣∣F (P )/xi(P )

∣∣
v

= ∞, while

if P ∈ D, i.e., if F (P ) = 0, then we set distv(P,D) = 0.

©2024, J.H. Silverman



38 Canonical Heights on Abelian Varieties

With more work one can define v-adic distances and v-adic local
heights for all smooth varieties X. These local heights have many
nice properties, similar to the properties of global heights described by
the Height Machine (Theorem 4.8), although just as with global Weil
heights, they are only well-defined up to bounded functions. We refer
the reader to [39, Theorem B.8.1] or [47, Chapter 10] for details.

Néron used the group law on an abelian variety to construct canon-
ical local heights get rid of the indeterminate bounded functions. We
summarize his main results.

Theorem 7.1. (Néron [69]) For notational clarity in the statement of
this theorem, we write |D| for the support of the divisor D. Let A/K
be an abelian variety. There exists a unique collection of functions

λ̂A,D,v : A(K̄v) r |D| −→ R,

indexed by divisors D ∈ DivK(A) and absolute values v ∈MK, so that
the following are true:

(a) The map λ̂A,D,v is continuous, where we give A(K̄v) the v-adic
topology.

(b) For all D,D′ ∈ DivK(A) and all v ∈MK,

λ̂A,D+D′,v = λ̂A,D,v + λ̂A,D′,v on A(K̄v) r
(
|D| ∪ |D′|

)
.

(c) For all morphisms ϕ : A→ B of abelian varieties over K and all
D ∈ DivK(B),

λ̂A,ϕ∗D,v = λ̂B,D,v ◦ ϕ on A(K̄v) r |ϕ∗D|.

(d) For all rational functions f ∈ K(A) and all v ∈ MK, there is a
constant γf,v such that

λ̂A,div(f),v = v ◦ f + γf,v on A(K̄v) r
∣∣div(f)

∣∣.
Further, there are only finitely many v ∈ K with γf,v 6= 0.

(e) (Normalization) For all D ∈ DivK(A) and all v ∈MK, we have19

lim
N→∞

N−2g
∑

P∈A[N ]
P /∈|D|

λ̂A,D,v(P ) = 0. (7.4)

19Without this normalization, which Néron did not impose in his original for-

mulation, the function λ̂A,D,v is only well-defined up to a constant, although that
constant will be 0 for all but finitely many v. We also mention that if the abso-
lute value on K is archimedean, then the normalization condition is equivalent to∫
A(K̄v)

λ̂A,D,v(P ) dµ(P ) = 0, where µ is Haar measure on A(K̄v) ∼= A(C).
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(f) (Local-Global Decomposition) There is a constant κ(A,D) so that
for all finite extensions L/K and all P ∈ A(L) r |D|,

ĥA,D(P ) =
1

[L : K]

∑
w∈ML

[Lw : Kw] · λ̂A,D,w(P )− κ(A,D).

Proof. See [47, Chapter 11] for a proof. There is also a discussion in [39,
Theorem B.9.3]. �

Remark 7.2. Néron also gives explicit formulas for the local canonical
height. For non-archimedean places of good reduction, the formula is
given in terms of an intersection on the special fiber of the Néron model;
indeed, Néron’s original motivation for constructing what we now call
the Néron model was for precisely this application to the theory of
heights. For non-archimedean places of bad reduction, the intersection
index is supplemented with a correction factor that causes many dif-
ficulties when trying to prove lower bounds for canonical heights. For
archimedean places, the explicit formula for the local height uses com-
plex analysis and is given in terms of the theta function associated to
the divisor D. At the end of this section we briefly give supplemental
material describing these formulas, with some notation and terminol-
ogy left undefined.

Remark 7.3. The limit formula (7.4) is used to normalize the canon-

ical local height functions λ̂A,D,v, but as noted in Theorem 7.1(f), the
sum of the normalized local canonical heights may then differ from the
global canonical height by a constant that we have denoted κ(A,D).
If dim(A) = 1, i.e., if A is an elliptic curve, then one can prove
that κ(A,D) = 0. However, in dimension 2 and greater, it is possible to
have κ(A,D) 6= 0. See [36] for a discussion, and [53] for an application
that could be significantly improved if we had better knowledge of this
mysterious κ-constant.
Supplementary Material 7.4 (A Soupçon of History). In a short address at the 1958 ICM [67],

Néron conjectured the existence of what is now known as the canonical, or Néron–Tate, height

on abelian varieties. Tate constructed ĥA,D using the telescoping sum argument that we have

described. Néron then constructed local canonical heights λ̂A,D,v using a variety of methods.

This provided a new proof of the existence of ĥA,D as the sum of the λ̂A,D,v , as well as giving

much finer insight into ĥA,D. A first announcement of these results was provided by Lang [44] at a
Séminaire Bourbaki talk in 1964. The review of Lang’s talk by Cassels [11] details the sometimes
convoluted dissemination and publication processes of the time. Cassels writes that Lang’s note
gives “an account of two papers containing fundamental results in the theory of heights of points

on algebraic varieties defined over global fields; the first, by John Tate (‘non publié, comme
d’habitude’), has already been partly published by proxy (by Manin [55]); . . . In the other paper,

by Néron, which will doubtless be published in due course in the conventional way,. . . .” Néron’s
paper [69] appeared in 1965.

Supplementary Material 7.5 (Explicit Formulas for Local Canonical Heights). As noted
in Remark 7.2, Néron gave explicit formulas for local canonical heights. We summarize some of
those formulas in the following theorem.
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Theorem 7.6. Let A/K be an abelian variety, let D ∈ Div(A), let A/RK be the Néron model

of A, and let v ∈MK .

(a) (Good Reduction) If v ∈M◦K and A has good reduction at v, then20

λ̂A,D,v(P ) =
〈
D · P

〉
A,v (7.5)

is the intersection index in the fiber over v of the closures of D and P in A. In particular,

in the good reduction case we have

λ̂A,D,v(P ) ≥ 0 for all P ∈ A(K̄v) r Support(D).

(b) (Bad Reduction) Let

jv : A(K) −→ (A/A◦)v(kv)

be the homomorphism that sends a point to its image in the group of components of the

Néron model over v. Then there is a function21

BD,v : (A/A◦)v(kv) −→ R

so that for all P ∈ A(K̄v) r Support(D), we have

λ̂A,D,v(P ) =
〈
D · P

〉
A,v + BD,v

(
jv(P )

)
− κ(A,D, v). (7.6)

Here κ(A,D, v) is a constant that is chosen so that (7.4) holds.

(c) (Archimedean Absolute Values) We let Hg denote the Siegel upper half space consisting of
all g-by-g matrices τ with complex entries such that Im(τ) is positive definite. Each τ ∈ Hg
determines a rank 2g lattice Λτ = Zg + τZg ⊂ Cg, a complex torus Aτ = Cg/Λτ , and a theta

function

θ(z, τ) =
∑

m∈Zg
exp
(
πi ·t m · τ · n+ 2πi ·t m · z

)
.

The theta function is not Λτ -invariant, but for λ ∈ Λτ , the ratio θ(z + λ, τ)/θ(z, τ) is a non-

vanishing function, so

Θτ :=
{
z ∈ Aτ : θ(z) = 0

}
∈ Div(Aτ ).

One can show that Θτ is a principal polarization of Aτ . Then the local canonical height on Aτ (C)

is more-or-less log |θ|, but we need a small correction since θ is not itself a function on Aτ (C).
Néron proved that

λ̂Aτ ,Θτ : Aτ (C) r |Θτ | −→ R, (7.7)

λ̂Aτ ,Θτ (z) = − log
∣∣θ(z, τ)

∣∣+ π ·t (Im z) · (Im τ)−1 · (Im z) + κτ ,

where κτ is chosen so that (7.4) holds.

Theta functions on elliptic curves have product expansions that lead to alternative formulas
such as the following: Let τ ∈ H1 with associated elliptic curve Eτ (C) ∼= C/(Z+τZ). Set q = e2πiτ

and u = e2πiz, and let

B2(x) = x2 − x+
1

6
be the second Bernoulli polynomial. Then

λ̂Eτ ,(0)(z) = −
1

2
B2

(
Im z

Im τ

)
log |q| − log |1− u| −

∑
n≥1

log
∣∣(1− qnu)(1− qnu−1

∣∣. (7.8)

20Néron proved that (7.5) is true up to a constant. See [8] for a proof that the
average of the intersection multiplicities over torsion points goes to 0, which implies
that the constant vanishes.

21Néron further proved that the values of BD,v are rational numbers with de-
nominators dividing 2#(A/A◦)v(kv).
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Exercises for Section 7.

Exercise 7.A. (a) Prove (7.2), which says that different equations for the
divisor D give distance functions that are bounded by multiples of one
another, where distv is defined by (7.1).

(b) Prove (7.3), which says that the global Weil height on Pn is the sum of
the local heights.

Exercise 7.B. Aside from (a), this “exercise” is really a research question.
Let A/K be a geometrically simple abelian variety, and let D ∈ Div(A)
be an ample effective divisor that gives a principal polarization on A. And
even (a) is non-trivial to prove.

(a) If dim(A) = 1, prove that κ(A,D) = 0.
(b) Is it true that κ(A,D) ≥ 0? If not, is there a constant C19(g) > 0 so

that

κ(A,D) ≥ −C19(g) for all A/K with dim(A) = g and for all ample
effective divisors D ∈ Div(A) that give a
principal polarization on A.

(c) If dim(A) ≥ 2, is it always true that κ(A,D) 6= 0?
(d) Let Ag be the moduli space of principally polarized abelian varieties of

dimension g, and let hAg be a Weil height function on Ag associated
to an ample divisor. Is κ(A,D) related to the height hAg(A,D) of the
point in the Ag(K) corresponding to the pair (A,D)? For example,
might it be true that there are positive constants so that

C20(g, ε) · hAg(A,D)1−ε ≤ κ(A,D) ≤ C21(g, ε) · hAg(A,D)1+ε?

(e) Let C/K be a curve of genus 2, let J/K be the Jacobian variety of C,
and let Θ ∈ Div(J) be the Θ-divisor (or more prosaically, let Θ be a
copy of C sitting in J). What can you say about κ(J,Θ)?

8. Lower Bounds for Canonical Heights

Let A/K be an abelian variety defined over a number field and

letD ∈ Div(A) be an ample symmetric divisor. The canonical height ĥA,D(P )
of a point P ∈ A(K̄) is a measure of the arithmetic complexity of P .
We proved in Theorem 5.4(b-1) that

ĥA,D(P ) = 0 ⇐⇒ P ∈ Ators,

so in some sense, torsion points have minimal complexity. It is thus
of interest to understand the complexity of the non-torsion points; in
particular, to study how small can it be.

There are two directions that this may take us, both of which lead
to many interesting theorems and open problems.

(1) We can fix the abelian varietyA/K and take non-torsion points P ∈
A(K̄) defined over larger and larger fields.
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(2) We can fix the field K and vary over all abelian varieties A/K and
all non-torsion points P ∈ A(K).

We start with (1), for which we first briefly review the much-studied
classical case where the abelian variety A is replaced by the multi-
plicative group Gm. But (2) has no Gm-analogue, since there is only
one Gm, so we jump straight to the abelian variety case.

8.1. Height Lower Bounds as the Field Varies: Multiplicative
Group. We start with the classical (absolute logarithmic) Weil height

h : Q̄ −→ R, h(α) =
1[

K : Q
] ∑
v∈MK

[
Kv : Q

]
·max

{
|α|v, 1

}
,

where K/Q is any finite extension with α ∈ K. The Weil height might
be said to be canonical relative to the multiplicative group Gm(Q̄) =
Q̄∗, since it satisfies

h(αn) = |n|h(α) for all n ∈ Z.

It also clearly satisfies

h(α) ≥ 0 for all α ∈ Q̄.

Theorem 8.1. (Kronecker) Let α ∈ Q̄∗. Then

h(α) = 0 ⇐⇒ α is a root of unity.

Proof. If αn = 1 for some n > 0, then

0 = h(1) = h(αn) = n · h(α),

so h(α) = 0. Conversely, suppose that h(α) = 0. Then

h(αn) = |n| · h(α) = 0 for all n ∈ Z,

so {αn : n ∈ Z} is a set of bounded height that is contained in the
number field Q(α). It follows from Northcott’s theorem (Remark 4.14)
that the set is finite. Hence we can find distinct integers n > m such
that αn = αm. Thus αn−m = 1 and n − m 6= 0, so α is a root
of unity. (It is instructive to compare this proof with the analogous

result for abelian varieties which states that ĥA,D(P ) = 0 if and only
if P ∈ A(K)tors; see Theorem 5.4(b-1).) �

In view of Kronecker’s theorem, it is natural to ask how small the
height can be for non-roots of unity. The answer is arbitrarily small,
since for example

h(21/n) =
log 2

n
. (8.1)

©2024, J.H. Silverman



8. Lower Bounds for Canonical Heights 43

However, the number 21/n generates a field of degree n, so we can
rewrite (8.1) as

h(21/n) =
log 2[

Q(21/n) : Q
] . (8.2)

Conjecture 8.2 (Lehmer Conjecture for Gm). There is an absolute
constant C > 0 such that if α ∈ Q̄∗ is not a root of unity, then

h(α) ≥ C[
Q(α) : Q

] .
Remark 8.3. Extensive computation [64] suggests that the best con-
stant in Lehmer’s conjecture is log(α0), where α0 ≈ 1.1762808 is a real
root of the polynomial

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1,

which was discovered by Mahler in 1933.

Theorem 8.4 (Dobrowolski [26]). For every ε > 0 the is a con-
stant C(ε) > 0 such that for all α ∈ Q̄∗ that are not roots of unity,
we have22

h(α) ≥ C(ε)[
Q(α) : Q

]1+ε .

8.2. Height Lower Bounds as the Field Varies: Abelian Va-
rieties. Lehmer’s conjecture has been extended to other settings, in-
cluding elliptic curves, abelian varieties, and dynamical systems. We
start by noting that Theorem 5.4(b-1), which we restate here, is the
abelian variety analogue of Kronecker’s theorem; see Theorem 8.1

Theorem 8.5. Let K/Q be a number field, let A/K be an abelian
variety, and let D ∈ DivK(A) be an ample symmetric divisor. Then

ĥA,D(P ) = 0 ⇐⇒ P is a torsion point.

Example 8.6. We note that the example in (8.2) generalizes to abelian
varieties. Thus fix a non-torsion point P ∈ A(K) and, for each n ≥ 1,
let Pn ∈ A(K̄) be a point satisfying [n]Pn = P . The Galois conjugates
of Pn are contained in the set Pn+A[n], and for large n we expect that[

K(Pn) : K
]
≈ #A[n] = n2g.

22Dobrowolski’s result is stronger than this. Writing d =
[
Q(α) : Q

]
for nota-

tional convenience, he proves that there is an absolute constant C > 0 such that

h(α) ≥ C

d
·
(

log log d

log d

)3

.
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This leads to the estimate

ĥA,D(Pn) =
1

n2
ĥA,D

(
[n]Pn

)
=

1

n2
ĥA,D(P ) ≈ ĥA,D(P )[

K(Pn) : K
]1/g ,

and thus to the following generalization of Lehmer’s conjecture (Con-
jecture 8.2) to the setting of abelian varieties.

Conjecture 8.7 (Lehmer Conjecture for Abelian Varieties [22, 58]).
Let K/Q be a number field, let A/K be a geometrically simple abelian
variety, and let D ∈ DivK(A) be an ample symmetric divisor. Then
there is a constant C22(A/K,D) > 0 such that

ĥA,D(P ) ≥ C22(A/K,D)[
K(P ) : K

]1/g for all non-torsion points P ∈ A(K̄).

We now state, without proof, the best general result currently known
for abelian varieties, after which we describe some stronger results for
certain classes of elliptic curves.

Theorem 8.8. Let K/Q be a number field, let A/K be an abelian
variety of dimension g, and let D ∈ DivK(A) be an ample symmetric
divisor.

(a) (Masser [56, 58], see also [20, 32]) For every ε > 0 there is a
constant C23(A/K,D, ε) > 0 such that

P ∈ A(K̄) r Ators =⇒ ĥA,D(P ) ≥ C23(A/K,D, ε)[
K(P ) : K

]2g+1+ε . (8.3)

(b) (David–Hindry [22], Ratazzi [76]) If A has complex multiplica-
tion,23 then the exponent in (8.3) can be replaced by 1 + ε.

For elliptic curves, i.e., for dim(A) = 1, there were earlier proofs
of both parts of Theorem 8.8. The following theorem describes those
results and gives an intermediate case.

Theorem 8.9. Let K/Q be a number field with ring of integers RK,

let E/K be an elliptic curve, and let ĥE be the canonical height on E
relative to the divisor (0). Then for every ε > 0 there is a constant
C24(E/K, ε) > 0 such that

P ∈ E(K̄) r Etors =⇒ ĥE(P ) ≥ C24(E/K, ε)[
K(P ) : K

]`+ε
23An abelian variety A of dimension g has complex multiplication if End(A)Q

is a CM field, i.e., an imaginary quadratic extension of a totally field of degree g
over Q.
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for the values of ` given in the following table and under the stated
restrictions on E:

` E/K Reference

` = 3 E/K arbitrary Masser [59]
` = 2 E/K with j(E) /∈ RK Hindry–Silverman [38]
` = 1 E/K has complex multiplication Laurent [51]

Remark 8.10. The CM results in Theorems 8.8 and 8.9 for CM abelian
varieties are direct analogues of Dobrowolski’s result for Gm. And just

as in Dobrowolski’s theorem, the
[
K(P ) : K

]−ε
may be replaced by a

logarithmic factor as described in the footnote to Theorem 8.4.

Proof Sketch of Theorem 8.9: Two Ideas. The two methods that have
been used to prove estimates such as those described in Theorems 8.8
and 8.9 may be informally described as the “transcendence theory
method” and the “Fourier averaging method.” The proofs are too
intricate for us to give in detail, but we make a few brief remarks
about each. In the following, all constants are postive and may depend
on A/K and D.

The Transcendence Theory Method. Rather than trying to prove that
the height of an individual point cannot be too small, we instead esti-
mate the number of points of small height defined over a finite exten-
sion L/K. Let

A(L;B) :=
{
P ∈ A(L) : ĥA,D(P ) ≤ B

}
.

Then the goal is to prove that there are positive constants C25, C26 so
that

#A
(
L; C25/[L : K]

)
≤ C26 · [L : K]g ·

(
log[L : K]

)g
. (8.4)

This estimate gives something a bit better than is stated in Theo-
rem 8.8(a), as well as providing a non-trivial estimate for the size
of A(L)tors; see Exercise 8.B.

In general, sets of the form A(L;B) have no additive structure, but
we can take advantage of the group law to form linear combinations
without increasing the height too much. Thus the set

A(L;B)(g) :=
{
P1 + · · ·+ Pg : P1, . . . , Pg ∈ A(L;B)

}
contains #A(L;B)g/g! points24 whose heights are bounded by g2B.
One then constructs a non-zero “small” function on A that vanishes to
high order at the points in A(L;B)(g). Next one uses Cauchy’s theorem
to get an upper bound, and a zero-estimate from transcendence theory

24Yes, we’re ignoring linear combinations that sum to 0; in practice, there are
lots of such matters to be dealt with.
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to get a lower bound, for the values of various partial derivatives of the
function evaluated at the points in A(L;B)(g). If A(L;B) is sufficiently
large, these bounds contradict one another.25

The Fourier Averaging Method. The Fourier averaging method has
been used obtain Lehmer-type bounds in the case of elliptic curves,
although see [53] for some initial work on abelian surfaces. So we

take E/K to be an elliptic curve, we let ĥE be the canonical height

relative to the divisor (0), and we consider the decomposition of ĥA,D
as a sum of local heights as described in Theorem 7.1(f). The explicit
formulas (7.6), (7.7), (7.8) for the local heights give a homomorphism
and a “nice” periodic fuction

tw : E(K̄) −→ R/Z and gw : R/Z −→ R

so that we can write λ̂E,w as (we’re cheating a bit here)

λ̂E,w = gw ◦ tw + (non-negative function). (8.5)

The idea is to look at at a sum of the heights of some multiples of P ,
weighted by the Fejér kernel. On the one hand, the fact that ĥE is a
quadratic form yields

M∑
m=1

(
1− m

M + 1︸ ︷︷ ︸
This is the Fejér kernel.

)
· ĥE

(
[m]P

)
=

( M∑
m=1

(
1− m

M + 1

)
·m2

)
ĥE(P )

=
M(M + 1)(M + 2)

12
· ĥE(P ). (8.6)

On the other hand, when we expand (8.6) using the local decomposition
from Theorem 7.1(f), apply the formula (8.5), and use the fact that tw
is a homomorphism, we end up needing to find a lower bound for sums
of the form
M∑
m=1

(
1− m

M + 1

)
· g(mt), where g : R/Z→ R is even, has g(0) as a

maximum, and satisfies
∫
R/Z g(t) dt = 0.

(8.7)
We write the Fourier series of g as26

g(t) =
∑
n6=0

cne
2πint =

∞∑
n=1

2cn cos(2πnt),

25We emphasize again that we’re cheating in many ways in order to give the
basic idea of the proof. For example, the “function” that vanishes at the points
in A(L;B)(g) is really a theta function, i.e., a section to a line bundle on A.

26Note that c0 =
∫
R/Z g(t) dt = 0, and c−n = cn since g is even.
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and then (8.7) becomes

M∑
m=1

(
1− m

M + 1

)
g(mt)

=
M∑
m=1

(
1− m

M + 1

)
·
∞∑
n=1

2cn cos(2πnmt)

=
∞∑
n=1

cn

(
2

M∑
m=1

(
1− m

M + 1

)
cos(2πmnt)︸ ︷︷ ︸

This is is ≥ −1 for all t ∈ R; see Exercise 8.C(a).

)

≥ −
∞∑
n=1

cn provided that the Fourier coeffi-
cients of g are non-negative.

(8.8)

For example, in the non-archimedean totally multiplicative case, the
function g(t) is essentially the periodic 2nd-Bernoulli polynomials

B2(t) = t2 − t+
1

6
=
∞∑
n=1

1

π2n2
cos(2πnt)

whose Fourier coefficients are visibly positive.
The magic of (8.8) is that there are M terms in the sum, and in

principle every cos(2πnmt) could be negative, but the lower bound
in (8.8) says that this cannot happen. The underlying reason is be-
cause cos(0) = 1 and the 2πnmt mod Z values can’t all cluster in the
region where cos is negative.

Unfortunately, the lower bound in (8.8) is negative; all that the
Fourier averaging yields is a lower bound that’s less negative than
it could be. So we also need to find some positive contributions to
the sum. One way to do this is via a naive pigeon-hole argument;
cf. [80]. Another method, which is used in [38], is described in Exer-
cise 8.C(b). �

Supplementary Material 8.11 (A Stronger Lehmer Conjecture). In the setting of Conjec-
ture 8.7, it has been conjectured [23, Conjecture 1.4] that we can replace K by the field K(Ators)

generated by all of the torsion points of A. Thus

ĥA,D(P ) ≥
C(A/K,D)[

K(Ators)(P ) : K(Ators)
]1/g for all non-torsion points P ∈ A(K̄).

Supplementary Material 8.12 (A Weaker/Stronger Lehmer-Type Result). If we restrict

the allowable field extensions, then it may be possible to prove a Lehmer-type estimate, or even
something stronger. As an example of such a result, if we restrict P to be defined over the maximal

abelian extension Kab of K, then it is known [4] that

ĥA,D(P ) ≥ C(A/K,D) > 0 for all non-torsion points P ∈ A(Kab). (8.9)
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Note that the lower bound does not decrease as the field of definition of P increases. For an

elliptic curve E/K, the same is true if we replace Kab with K(Etors); see [34].

8.3. Height Lower Bounds as the Abelian Variety Varies. For
this section we fix a number field K/Q and discuss lower bounds for
the canonical heights of non-torsion points on abelian varieties defined
over K. The general philosophy is that if the abelian variety has high
complexity, then its (non-torsion) points should have high complexity.

Measuring the complexity of an abelian variety using the height h(A/K)
given in Definition 4.17, our general philosophy translates into the fol-
lowing conjecture.

Conjecture 8.13 (Dem’janenko–Lang Height Conjecture). [25], [45,
page 92], [82] Let K/Q be a number field, and let g ≥ 1. As described
in Section 4.2, we fix a height function h on the set of abelian varieties
of dimension g defined over K. Then there are constants

C27(K, g) > 0 and C28(K, g) ≥ 0

so that for all abelian varieties A/K with dim(A) = g and all ample
symmetric divisors D ∈ Div(A), we have

ĥA,D(P ) ≥ C27(K, g) · h(A/K)− C28(K, g)

for all P ∈ A(K) such that Z · P is Zariski dense in A.

Remark 8.14. One might even hope that Conjecture 8.13 is true with
constants C27 and C28 that depend only on [K : Q] and g.

Versions of Conjecture 8.13 are known if one restricts to a subset
of the set of abelian varieties. In particular, the conjecture is true for
abelian varieties A such that the distance of the moduli point of A to
the boundary of moduli space satisfies some condition. We give two
examples of such results, with the caveat that we have not stated the
strongest versions from the cited papers.

Theorem 8.15. Let Ag denote the moduli space of principally polarized
abelian varieties of dimension g, let Ag be the closure of Ag for some
projective embedding, and let Asimp

g ⊂ Ag be the locus of geometrically
simple abelian varieties. Then Conjecture 8.13

ĥA,D(P ) ≥ C27(K, g) · h(A/K)− C28(K, g)

is true for all A ∈ Ag(K) satisfying one of the following conditions :

(a) (David [21]) There is an archimedean absolute value v ∈M∞
K such

that

h(A/K) ≤ C29(K, g) · distv
(
A, (Ag rAg)(Kv)

)
.
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(b) (Pazuki [72]) Assume that dim(A) = 2 and that for all archime-
dean absolute values v ∈M∞

K , we have

distv
(
A, (Ag rAsimp

g )(Kv)
)
≥ C30(K, g) > 0.

For elliptic curves, more is known. We state two results, restricting
attention to Q for ease of exposition. In order to state these results,
we set the following notation.

Definition 8.16. Let E/Q be an elliptic curve. A quasi-minimal
Weierstrass equation for E is an equation of the form

E : y2 = x3 + Ax+B with A,B ∈ Z, and with gcd(A3, B2)
a 12th-power-free integer.

The minimal discriminant, conductor, and Szpiro-ratio of E are, re-
spectively, the quantities27

Dqm
E = 4A3 + 27B2, Nqm

E =
∏
p|Dqm

E

p ·
∏

p|gcd(A,B)

p, Sqm
E =

log |Dqm
E |

logNqm
E

,

where A and B are the coefficients of a quasi-minimal Weierstrass equa-
tion.

Theorem 8.17. (Hindry–Silverman [37, 80]) Let E/Q be an elliptic
curve. Then for all non-torsion points P ∈ E(Q), we have

ĥE(P ) ≥ C27 ·max
{

log |∆E|, h
(
j(E)

)}
− C28

where either :

(a) the constants C27 and C28 depend only on the number of distinct
primes dividing the denominator of j(E), or

(b) the constants C27 and C28 depend only on the Szpiro-ratio Sqm
E

of E.

Remark 8.18. A conjecture of Szpiro asserts that for any ε > 0, there
are only finitely many elliptic curves E/Q whose Szpiro ratio satisfies

Sqm
E > 6 + ε.

The ABC-conjecture of Masser and Osterlé is more-or-less equivalent
to Szpiro’s conjecture; see for example [88, VIII §11]. Thus a com-
bination of Theorem 8.17 and the ABC/Szpiro conjecture imply the
validity of the height conjecture (Conjecture 8.13) for dim(A) = 1.

27We are cheating here as to the powers of 2 and 3 that appear in the minimal
discriminant and the conductor, hence our use of the “qm” superscript to indicate
that our discriminant and conductor are relative to a quasi-minimal Weierstrass
equation. However, since our cheating involves at most a small bounded power of 2
and 3, we can absorb our transgression into the constants!
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We state and sketch the proof of a weak (but still interesting) version
of the Dem’janenko–Lang conjecture (Conjecture 8.13) in which we
vary over the cyclic twists of a fixed abelian variety A.

Theorem 8.19. ([82]) Fix the following quanitites:

A/K an abelian variety defined over a number field.
D an ample symmetric divisor D ∈ DivK(A).

m ≥ 2 an integer such that µm ⊆ Aut(A/K) as Gal(K̄/K)-
modules.

A∆/K the cyclic twist of A/K by ∆ ∈ K∗ as described in Ex-
ample 3.29, where we recall that A∆ and A∆′ are K-
isomorphic if and only if ∆/∆′ ∈ K∗m.

ξ∆ a K̄-isomorphism ξ∆ : A∆ → A.
D∆ the divisor D∆ = ξ∗∆D.

Then there are constants

C31 = C31(K,A,D,m) > 0 and C32 = C32(K,A,D,m) ≥ 0

so that for all ∆ ∈ K∗ and all P ∈ A∆(K), either

[ζ]P = P for some 1 6= ζ ∈ µm, (8.10)

or else

ĥA∆,D∆
(P ) ≥ C31

∑
0 6= p ∈ Spec(RK)

m - ordp(∆)

logNK/Q(p)− C32. (8.11)

Remark 8.20. With notation as in Theorem 8.19, one can show that
there is a finite set of prime S(A/K,m) such that if p /∈ S(A/K,m),
then for all ∆ ∈ K∗ we have

A∆ has bad reduction at p ⇐⇒ m - ordp(∆).

See Exercise 8.H. Hence the lower bound (8.11) for ĥA∆,D∆
(P ) more-

or-less measures the bad reduction of A∆, which in turn is more-or-less
the height of A∆. Thus Theorem 8.19 is a version of Conjecture 8.13
for the cyclic twists of a fixed abelian variety.

The proof of Theorem 8.19 relies on the useful observation that the
Weil height of a point is bounded below by a function that grows log-
linearly as a function of the discriminant of the field generated by the
point’s coordinates.
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Proposition 8.21. Let P ∈ PN(Q̄), let KP be the field of definition28

of P , and let dP = [K : Q]. Then

h(P ) ≥ 1

2dP − 2

(
1

dP
· log

∣∣Disc(KP/Q)
∣∣− dP log(dP )

)
.

Proof. Earlier we posed as an exercise the special case of Proposi-
tion 8.21 that will be used in the proof of Theorem 8.19; see Exer-
cise 4.F. Proposition 8.21 for P1 was proven by Mahler [54] (using
somewhat different terminology), and it was proven for PN using height
terminology in [82, Theorem 2]. �

Proof sketch of Theorem 8.19. We choose δ ∈ K̄∗ satisfying δm = ∆ so
that for all σ ∈ Gal(K̄/K), the isomorphism ξ∆ satisfies

ξ−1
∆ ◦ σ(ξ∆) = [δσ/δ] ∈ µm ⊆ Aut(A/K). (8.12)

Then for any P ∈ A∆(K) and σ ∈ Gal(K̄/K), we have

σ
(
ξ∆(P )

)
= σ(ξ∆)

(
σ(P )

)
= σ(ξ∆)(P ) since P ∈ A∆(K),

= ξ∆

(
[δσ/δ](P )

)
from (8.12). (8.13)

In particular, if we further assume that the point P ∈ A∆(K) satisfies

P 6= [ζ]P for all 1 6= ζ ∈ µm, (8.14)

then we can compute

σ
(
ξ∆(P )

)
= ξ∆(P )

⇐⇒ ξ∆(P ) = ξ∆

(
[δσ/δ](P )

)
from (8.13).

⇐⇒ P = [δσ/δ](P ) since ξ∆ is an isomorphism,

⇐⇒ δσ/δ = 1 from (8.14).

Hence the field of definition of ξ∆(P ) is

Kξ∆(P ) = Fixed field of
{
σ ∈ Gal(K̄/K) : σ

(
ξ∆(P )

)
= ξ∆(P )

}
= Fixed field of

{
σ ∈ Gal(K̄/K) : δσ = δ

}
= K(δ). (8.15)

In particular, we note that

[Kξ∆(P ) : Q] =
[
K(δ) : Q

]
≤ m · [K : Q] (8.16)

is bounded by a quantity that does not depend on P .

28The field of definition of a point P = [α0, . . . , αN ] ∈ PN (Q̄) is obtained
by choosing an index i with αi 6= 0, setting βj = αj/αi, and taking KP =
Q(β0, . . . , βN ). Alternatively, KP is the fixed field of

{
σ ∈ Gal(Q̄/Q) : σ(P ) = P

}
.
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We compute

ĥA∆,D∆
(P )

= ĥA,D
(
ξ∆(P )

)
from Exercise 5.E,

= hA,D
(
ξ∆(P )

)
+O(1) from the fact (Theorem 5.2(b)) that

ĥA,D − hA,D is bounded,

=
1

ν
hPN

(
ψνD ◦ ξ∆(P )

)
+O(1) where we select an integer ν ≥ 1 so

that νD is very ample, and then
fix an associated embedding
ψνD : A ↪→ PN ,

≥ C33 log
∣∣∣Disc

(
Kξ∆(P )

/
Q
)∣∣∣− C34 from Proposition 8.21 and the

fact (8.16) that the degree of the
extension Kξ∆(P )/Q is bounded
independently of P ,

= C33 log
∣∣∣Disc

(
K(δ)

/
Q
)∣∣∣− C34 from (8.15).

It remains to observe that there is a finite set of prime S(K,m) in Spec(RK)
such that for primes p /∈ S(K,m), we have

m - ordp(∆) =⇒ p is ramified in K(δ),

=⇒ p | Disc
(
K(δ)

/
K
)
.

It follows that

log
∣∣∣Disc

(
K(δ)

/
Q
)∣∣∣ ≥ C35(K,m)

∑
0 6= p ∈ Spec(RK)

m - ordp(∆)

logNK/Q(p)− C36(K,m),

which completes the proof of Theorem 8.19. �

Supplementary Material 8.22 (A Soupçon of History). Dem’janenko stated and proved Conjec-
ture 8.13 for a certain collection of elliptic curves. Lang expressed some doubt about Dem’janenko’s
proof, while also extending the conjecture to all elliptic curves. Silverman subsequently further ex-

tended the conjecture to abelian varieties, with the Zariski density condition being an observation
of Bertrand.

Supplementary Material 8.23 (Lower Bounds for E/Q). Lang’s original formulation of Con-

jecture 8.13 for an elliptic curve E/Q with minimal discriminant ∆E ∈ Z had the form29

ĥE(P ) ≥ C27 · log |∆E | − C28. (8.17)

We note that (8.17) implies that

ĥmin
Q := inf

E/Q
P∈E(Q)rEtors

ĥE(P ) > 0 and ˆ̀min
Q := inf

E/Q
P∈E(Q)rEtors

ĥE(P )

log |∆E |
> 0.

29Assuming a deep conjecture of M. Hall, we do not get a stronger statement if
we include h

(
j(E)

)
in lower bound in (8.17).
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An early table giving upper bounds for ĥmin
Q and ˆ̀min

Q appears in [81, Table 2], and Elkies con-

ducted a more extensive search giving a much better upper bound for ĥmin
Q ; see people.math.

harvard.edu/~elkies/low_height.html. A search of the elliptic curves E/Q in the LMFDB [52]
having conductor at most 106 found that the following curve in this set gives the smallest values

for both ĥmin
Q and ˆ̀min

Q :

y2 + xy + y = x3 + x2 − 125615x+ 61201397 [LMFDB Label = 3990.v1]

DiscE/Q = −211345775193, P = (7107, 594946),

log(NE)

log |DiscE/Q |
= 5.047, ĥE(P ) = 0.00891,

ĥE(P )

log |DiscE/Q |
= 0.00021

Exercises for Section 8.

Exercise 8.A. With notation as in the statement of Lehmer’s conjecture
for abelian varieties (Conjecture 8.7), prove that for every ε > 0, there are
infinitely many non-torsion points P ∈ A(K̄) satisfying

ĥA,D(P ) ≤ 1[
K(P ) : K

]1/g−ε .
Exercise 8.B. With notation as in the proof sketch of Theorem 8.9, use (8.4)
to prove the following.

(a) Prove that

#A(L)tors ≤ C26 · [L : K]g ·
(
log[L : K]

)g
.

(b) Prove that

ĥA,D(P ) ≥ C37(A/K,D)

[L : K]2g+1 ·
(
log[L : K]

)2g for all P ∈ A(L) rAtors.

Note that this is a bit stronger than the estimate in Theorem 8.9.
Hint : Apply (8.4) to the set of multiples of P .

Exercise 8.C. Let t ∈ R.

(a) Prove that

M∑
m=1

(
1− m

M + 1

)
cos(mt) = −1

2
+

1

2(M + 1)

∣∣∣∣ M∑
k=0

eikt
∣∣∣∣2. ≥ −1

2
.

(b) Suppose that there is an integer N ≥ 1 such that Nt ∈ Q. Prove that

∞∑
n=1

1

n2

M∑
m=1

(
1− m

M + 1

)
cos(2πnmt) ≥ π2

6
(M + 1)

(
M + 1

N
− 1

)
.

Exercise 8.D. Let K be a number field or a function field, let ϕ : PN → PN
be a morphism of degree d ≥ 2 defined over K, and let ϕ◦n = ϕ ◦ ϕ · · · ◦ ϕ
denote the n-fold iterate of ϕ. Let h : PN (K̄)→ R be the Weil height on PN
as described in Definition 4.5.

(a) Let P ∈ PN (K̄). Prove that the following limit exists:

ĥϕ(P ) := lim
n→∞

d−n · h
(
ϕ◦n(P )

)
.
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(b) The ϕ-orbit of a point P ∈ PN (K̄) is the image under the set of forward
iterates of ϕ,

Orbitϕ(P ) :=
{
ϕ◦n(P ) : n ≥ 0

}
.

A point P is said to be preperiodic for f if its orbit Orbitϕ(P ) is finite.
Suppose that K is a number field. Prove that

P is preperiodic ⇐⇒ ĥϕ(P ) = 0.

This is a dynamical analogue of Theorems 8.1 and 8.5.

Exercise 8.E. Let G be a group, and for each m ≥ 1, let

ϕm : G −→ G, ϕm(g) = gm

be the mth power map. Let g ∈ G. Prove that the following are equiva-
lent.

(a) g is an element of finite order.
(b) There exists an m ≥ 2 such that the set

{
ϕnm(g) : n ≥ 1

}
is finite.

(Here ϕnm denotes the nth iterate of the map ϕm.)
(c) For all m ≥ 2, the set

{
ϕnm(g) : n ≥ 1

}
is finite.

Exercise 8.F. We consider the Dem’janenko–Lang conjecture (Conjec-
ture 8.13).

(a) Prove that Conjecture 8.13 is false for g ≥ 2 if we require only that P ∈
A(K) is a non-torsion point.

(b) Prove that if we make the additional assumption that A is a simple
abelian variety, then Conjecture 8.13 is equivalent the same statement
with the requirement on P ∈ A(K) being relaxed to the assumption
that P is not a torsion point.

Exercise 8.G. With notation as in Theorem 8.19, prove that{
∆ ∈ K∗/K∗m : A∆(K)tors 6⊆ A[m]

}
is a finite set, i.e., prove that there are only finitely many distinct twists
of A having a K-rational torsion point whose order deos not divide m.
Hint : A starting point is Exercise 3.F, which says that if [ζ]P = P for
some 1 6= ζ ∈ µm, then [m]P = 0. Then use Theorem 8.19.

Exercise 8.H. With notation as in Theorem 8.19, let S(A/K,m) be the
set of primes 0 6= p ∈ Spec(RK) satisfying any one of the following condi-
tions:

(a) The characteristic p of p satisfies p ≤ [K : Q].
(b) p | m.
(c) A/K has bad reduction at p.

Prove that for all ∆ ∈ K∗ and all primes p /∈ S(A/K,m), we have

A∆ has bad reduction =⇒ m - ordp(∆).

Hint : The criterion of Néron–Ogg–Shafarevich [79] can be used to determine
whether A∆ has bad reduction at p.
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Exercise 8.I. The list of elliptic curves E/Q in the LMFDB includes curves
of conductor far larger than 106. Extend the search described in Supplemen-
tary Material 8.23 and see if you can find smaller (non-zero) values of ĥE(P )

and ĥE(P )/ log |DiscE/Q |.

9. Canonical Heights in Families and Specialization
Theorems

Suppose that we have a family of abelian varieties and a family of
points. We might ask how the canonical heights of those points vary. In
this section we give an answer to that question, discuss various ways in
which that answer might be strengthened, and give a specialization ap-
plication. For the remainder of Section 9, we fix the notation described
in Table 1.

K a number field.

C/K a smooth projective curve C/K.

A/K(C) an abelian variety defined over K(C).

(A, π) a smooth projective family of varieties π : A → C defined
over K whose generic fiber is A. This implies that there
a non-empty Zariski open set C◦ ⊂ C so that A◦ =
π−1(C◦) is an abelian group scheme† over C◦.

P a point P ∈ A
(
K(C)

)
.

P the section P : C → A associated to P . For notational
convenience, we write Pt instead of P(t) for the image of
a point t ∈ C(K̄).

D a divisor D ∈ Div(A/K).

D the divisor D ∈ Div(A/K) obtained by “thickening” D.‡

hC a Weil height function on C(K̄) associated to a divisor
of degree 1.

† In other words, the addition and inversion maps on A extend to mor-
phisms A◦ ×C◦ A◦ → A◦ and A◦ → A◦ that commute with π and that
make A◦ into an abelian group scheme over C◦.
‡ In other words, D is a divisor on A/K, where A/K ∼= A× SpecK(C)
is the generic fiber of A, and such that D is the Zariski closure of D
in A.

Table 1. Notation for Section 9.

Theorem 5.2(b) says that the canonical height ĥA,D on an abelian
variety differs from the Weil height hA,D by a bounded amount, but in
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general the bound will depend on A and D. The following lemma quan-
tifies this result by saying, roughly, that the the difference is bounded
in terms of the equations that define A and D.

Lemma 9.1. Fix a Weil height function hA,D on A. Then there are
constants C38 > 0 and C39 ≥ 0 such that for all x ∈ A◦(K̄),∣∣∣ĥAπ(x),Dπ(x)

(x)− hA,D(x)
∣∣∣ ≤ C38hC

(
π(x)

)
+ C39.

Proof. For ease of exposition, and because it is the case with the most
applications, we will give the proof in the case that D is symmetric.
We leave the anti-symmetric case to the reader, and the general case
then follows by linearity.

We let

hA,D : A(K̄) −→ R

be a Weil height function on A(K̄) associated to the divisor D. We
consider the duplication morphism [2]A : A → A, and we extend it to
a dominant rational map30

[2]A : A A

We further note that [2]A is a morphism when when restricted to A◦.
Height functions do not behave nicely for rational maps, but we know

that it is always possible to turn a rational map into a morphism by
blowing up the indeterminacy locus. Thus we can find a projective
variety B/K, a birational morphism λ : B → A that is an isomorphism
over A◦, and a morphism ϕ : B → A, so that the following diagram
commutes:

30We know that A◦ → C◦ is a group scheme, so its multiplication map

µA◦ : A◦ ×C◦ A◦ −→ A◦

is a morphism. It follows that the duplication may [2]A◦ is a morphism on A◦,
since [2]A◦ is the composition of the diagonal embedding followed by µA◦ . But
when we try to extend µA◦ to all of A, there may be a non-trivial indeterminacy
locus, so in particular, the duplication map [2]A may only be a rational map.
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B

A A

C C

ϕ
λ

[2]A
π π

The fact that ϕ is a morphism allows us to apply the height machine
to conclude that

hA,D ◦ ϕ = hB,ϕ∗D +O(1). (9.1)

We know from Corollary 3.8 that [2]∗AD ∼ 4D on the generic fiber
of A.31 Further,the duplication map is a morphism on A◦, so we (more-
or-less) have32

[2]∗A◦D◦ ∼ 4D◦ in Div(A◦).
Extending to all of A, we find that

ϕ∗D ∼ 4λ∗D + F (9.2)

for some divisor F ∈ Div(B) that is supported above the indeterminacy
locus of [2]A, and thus that satisfies

Support(F) ⊆ λ−1(ArA◦) = (π ◦ λ)−1(C r C◦). (9.3)

We compute

hA,D ◦ ϕ = hB,ϕ∗D +O(1) from (9.1), since ϕ is a morphism,

= hB,4λ∗D+F +O(1) from (9.2),

= 4hB,λ∗D + hB,F +O(1)

= 4hA,D ◦ λ+ hB,F +O(1) since λ is a morphism. (9.4)

We use the fact (9.3) that the support of F is contained in a finite
number of fibers of π ◦ λ to choose an effective divisor E ∈ Div(C)
satisfying

Support(E) ⊂ CrC◦ and − (π ◦λ)∗(E) ≤ F ≤ (π ◦λ)∗(E). (9.5)

31This is where we use the assumption that D is symmetric. If it were anti-
symmetric, we would instead have [2]∗AD ∼ 2D.

32More precisely, we can cover C◦ by finitely many Zariski open subsets so that
we get this relation above each subset. But for ease of exposition, we will ignore
such issues and leave it to the reader to make the necessary adjustments in the
proof.
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We use this to estimate

|hB,F | ≤ hB,(π◦λ)∗(E) +O(1) away from the support of (π ◦ λ)∗(E),
using (9.5) and the fact that the
height associated to effective divisor is
bounded below off of its base locus,

= hC,E ◦ π ◦ λ+O(1) on C◦, i.e., away from the support of E,
since λ and π are morphisms,

= O(hC ◦ π ◦ λ) since hC is a height attaced to a degree 1,
and thus ample, divisor; see Exercise 4.C.

(9.6)

Using (9.6) in (9.4), we find that

hA,D ◦ ϕ = 4hA,D ◦ λ+O(hC ◦ π ◦ λ) on B◦. (9.7)

Now let x ∈ A◦(K̄). The restriction of the map λ to B◦ is an
isomorphism from B◦ to A◦, so there is a unique point y = λ−1(x) ∈
B(K̄). Evaluating (9.7) at y gives

hA,D ◦ ϕ(y) = 4hA,D ◦ λ(y) +O
(
hC ◦ π ◦ λ(y)

)
hA,D

(
ϕ ◦ λ−1(x)

)
= 4hA,D

(
λ ◦ λ−1(x)

)
+O

(
hC ◦ π ◦ λ ◦ λ−1(x)

)
hA,D

(
[2]A(x)

)
= 4hA,D(x) +O

(
hC
(
π(x)

))
. (9.8)

For each n ≥ 0, we replace x in (9.8) with [2n]A(x), and we note that

π
(
[2n]A(x)

)
= π(x),

since [2]A respects the fibration by π. This gives

hA,D
(
[2n+1]A(x)

)
− 4hA,D

(
[2n]A(x)

)
= O

(
hC
(
π(x)

))
. (9.9)

The key observation is that the big-O constant in (9.9) depends on
neither x nor n. So we can use the same argument that we used in the
existence proof of the canonical height to deduce∣∣∣∣ 1

4n
hA,D

(
[2n]A(x)

)
− hA,D(x)

∣∣∣∣ = O
(
hC
(
π(x)

))
. (9.10)

See the proof of Theorem 5.2(a), especially the telescoping sum calcu-
lation in (5.6) and the special case with m = 0 in (5.7). Letting n→∞
in (9.10) yields ∣∣ĥA,D(x)− hA,D(x)

∣∣ = O
(
hC
(
π(x)

))
.

which completes the proof of Lemma 9.1. �
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Remark 9.2. Lemma 9.1 holds more generally for families of abelian
varieties A → T where the base variety has higher dimension. See
Exercise 9.A.

The next result improves on the estimate in Lemma 9.1 in the case
that the points on A vary in an algebraic family.

Theorem 9.3. Continuing with the notation described in Table 1, we
have

lim
t∈C(K̄)
hC(t)→∞

ĥAt,Dt(Pt)
hC(t)

= ĥA,D(P ). (9.11)

Proof. We use the triangle inequality to break the difference∣∣∣ĥAt,Dt(Pt)− ĥA,D(P ) · hC(t)
∣∣∣

into three pieces. Thus∣∣∣ĥAt,Dt(Pt)− ĥA,D(P ) · hC(t)
∣∣∣ (9.12)

≤
∣∣∣ĥAt,Dt(Pt)− hA,D(Pt)

∣∣∣ (9.13)

+
∣∣∣hA,D(Pt)− hA,D(P ) · hC(t)

∣∣∣ (9.14)

+
∣∣∣hA,D(P )− ĥA,D(P )

∣∣∣ · hC(t). (9.15)

We can use Lemma 9.1 with x = Pt and π(x) = π(Pt) = t to bound (9.13)
by ∣∣∣ĥAt,Dt(Pt)− hA,D(Pt)

∣∣∣ ≤ C38hC(t) + C39. (9.16)

For (9.14) we use the fact that the canonical height and the Weil height
differ by a bounded amount (Theorem 5.2(b)), where we’re working in
the function field setting with P ∈ A

(
K(C)

)
. This yields∣∣∣hA,D(P )− ĥA,D(P )

∣∣∣ · hC(t) ≤ C40hC(t). (9.17)

We note that the constants in (9.16) and (9.17) are independent of
both P ∈ A

(
K(C)

)
and t ∈ C(K̄). We will not be quite that lucky

when we bound (9.14).
The key to bounding (9.14) is to note that the map P : T → A is a

morphism.33 Hence

hA,D(Pt) = hC,P∗D(t) +OP(1),

33If f : X 99K Y is a rational map and X is a non-singular variety, then the
indeterminacy locus of f has codimension at least 2. In particular, if X is a smooth
curve, then f is a morphism; see [35, Lemma V.5.1].
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which we rewrite as∣∣∣hA,D(Pt)− hC,P∗D(t)
∣∣∣ ≤ C41(P ), (9.18)

where we stress that the constant C41(P ) depends on P , but does not
depend on t.

We divide the inequality (9.12)–(9.15) by hC(t) and substitute in the
estimates provided by (9.16)–(9.18). This yields∣∣∣∣∣ ĥAt,Dt(Pt)hC(t)

− ĥA,D(P )

∣∣∣∣∣ ≤
(
C38 +

C39

hC(t)

)
+

(
hC,P∗D(t)

hC(t)
+
C41(P )

hC(t)
− hA,D(P )

)
+ C42. (9.19)

We next do a calculation that will be useful in dealing with (9.19).
Thus

lim
t∈C(K̄)
hC(t)→∞

hC,P∗D(t)

hC(t)
= deg(P∗D) from Theorem 4.8(e), or more

precisely, the special case described
in Exercise 4.C, plus the fact
that hC is the height on C relative
to a divisor of degree 1,

= hA,D(P ) +O(1) from Proposition 4.15. (9.20)

We take the limsup of (9.19) as hC(t) → ∞, using (9.20) and the
observation that although the constant C41(P ) depends on P , it does
not depend on t, so C41(P )/hC(t) vanishes as hC(t)→∞. This yields

lim sup
t∈C(K̄)
hC(t)→∞

∣∣∣∣∣ ĥAt,Dt(Pt)hC(t)
− ĥA,D(P )

∣∣∣∣∣ ≤ C43, (9.21)

where C43 is the sum of C38 and C42 and a bound for the O(1) appearing
in (9.20).

We observe that the constant C43 appearing in (9.21) does not de-
pend on the point P ∈ A

(
k(C)

)
. So we are free to replace P with [m](P )

for any integer m ≥ 1. So we do that and exploit the fact that the ca-
nonical heights are quadratic forms,

ĥAt,Dt
(
[m](P)t

)
= m2 · ĥAt,Dt(Pt) and ĥA,D

(
[m](P )

)
= m2 · ĥA,D(P ).

Hence evaluating (9.20) at [m](P ) and dividing both sides by m2 yields

lim sup
t∈C(K̄)
hC(t)→∞

∣∣∣∣∣ ĥAt,Dt(Pt)hC(t)
− ĥA,D(P )

∣∣∣∣∣ ≤ C44

m2
. (9.22)
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The estimate (9.22) holds for all m ≥ 1, so we can let m → ∞ to
deduce that

lim sup
t∈C(K̄)
hC(t)→∞

∣∣∣∣∣ ĥAt,Dt(Pt)hC(t)
− ĥA,D(P )

∣∣∣∣∣ = 0.

This concludes that proof of the limit formula (9.11), and with it the
proof of Theorem 9.3 �

Definition 9.4. Continuing with the notation in Table 1, we note that
each point Q ∈ A

(
K̄(C)

)
extends to a unique section

σQ : C −→ A

whose restriction to the generic fiber is Q. Then for each point t ∈
C◦(K̄), we define an associated specialization map

St : A
(
K̄(C)

)
−→ At(K̄), St(Q) = σQ(t).

Remark 9.5. The specialization map is a well-defined homomorphism
from A

(
K̄(C)

)
to At(K̄); see Exercise 9.B

Corollary 9.6 (Specialization Theorem). We continue with the nota-
tion in Table 1 and Definition 9.4, and we let (B/K,ϕ) be the K(C)/K-
trace of A as described in Definition 3.22. Then the set

C◦noninj(K̄) :=

t ∈ C◦(K̄) :

the specialization map
St : A

(
K̄(C)

)
/ϕ(B)(K̄)

→ At(K̄)ϕ(Bt)(K̄)
is not injective

 (9.23)

is a set of bounded height. In particular, for any finite extension L/K,
the set C◦noninj(L) is finite, i.e., there are only finitely many points t ∈
C◦(L) for which the specialization map St fails to be injective.

Proof of Corollary 9.6. For ease of exposition, we will assume that the
K(C)/K-trace of A is trivial, where we we refer the reader to Defini-
tion 3.22 for the description of the trace. We recall from Definition 5.5
that there is a canonical height pairing on A

(
K̄(C)

)
and that there are

canonical height pairings on each At(K̄). Let P,Q ∈ A
(
K̄(C)

)
. We
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use Theorem 9.3 to compute

lim
t∈C(K̄)
hC(t)→∞

〈Pt, Qt〉At,Dt
hC(t)

=
1

2
lim

t∈C(K̄)
hC(t)→∞

ĥAt,Dt(Pt +Qt)− ĥAt,Dt(Pt)− ĥAt,Dt(Qt)
hC(t)

=
1

2

(
ĥA,D(P +Q)− ĥA,D(P )− ĥA,D(Q)

)
from Theorem 9.3,

= 〈P,Q〉A,D. (9.24)

Let r be the rank of the finitely generated group A
(
K̄(C)

)
,34 and

choose points P1, . . . , Pr ∈ A
(
K̄(C)

)
that are generators for the free

part of A
(
K̄(C)

)/
A
(
K̄(C)

)
tors

. Theorem 5.4(b′) says that ĥA,D ex-

tends to a positive definite quadratic form on A
(
K̄(C)

)
⊗R, so the asso-

ciated height regulator (Definition 5.6) for the independent points P1, . . . , Pr
satisfies

RegA,D(P1, . . . , Pr) := det
(
〈Pi, Pj〉A,D

)
1≤i,j≤r

> 0.

Applying (9.24) to each pair (Pi, Pj) and using the fact that the deter-
minant is a sum of r-fold products of its entries, we obtain the formula

lim
t∈C(K̄)
hC(t)→∞

RegDt
(
St(P1), . . . , St(Pr)

)
hC(t)r

= RegD(P1, . . . , Pr) > 0. (9.25)

We consider the subgroup

SpanZ(P1, . . . , Pr) ⊆ A
(
K̄(C)

)
generated by P1, . . . , Pr. Restricting the specialization map to this
subgroup, we see for t ∈ C◦(K̄) that

St restricted to SpanZ(P1, . . . , Pr) is not injective

⇐⇒ σt(P1), . . . , σt(Pr) are Z-linearly dependent in A(K̄)

⇐⇒ RegDt
(
σt(P1), . . . , σt(Pr)

)
= 0

since 〈 · , · 〉At,Dt is positive
definite on At(K̄)⊗ R.

(9.26)

34This is one place that we use the assumption that TraceK(C)/K(A) = 0, since

in general it is only the quotient A
(
K̄(C)

)
/ϕ
(
B(K̄)

)
that is finitely generated,

where (B,ϕ) = TraceK(C)/K(A). See Theorem 3.25.
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Combining (9.25) and (9.26) yields{
t ∈ C◦(K̄) : St restricted to SpanZ(P1, . . . , Pr) is not injective

}
is a set of bounded height. (9.27)

We can thus find a constant C45 so that

hC(t) ≥ C45 =⇒ St : SpanZ(P1, . . . , Pr)→ At(K̄) is injective.
(9.28)

We next observe that for any non-zero point Q ∈ A
(
K̄(C)

)
, the set{

t ∈ C◦(K̄) : St(Q) = 0
}

is a finite set,

since it is the intersection of distinct 1-dimensional subvarieties of A.
Applying this to the finitely many non-zero points in the torsion sub-
group A

(
K̄(C)

)
tors

, we see that there is a constant C46 so that

hC(t) ≥ C46 =⇒ St : A
(
K̄(C)

)
tors
→ At(K̄) is injective. (9.29)

The group A
(
K(C)

)
is the direct sum of its torsion and free pieces,

i.e.,
A
(
K(C)

)
= A

(
K(C)

)
tors

+ SpanZ(P1, . . . , Pr);

and we know from (9.28) and (9.29) that St is injective on each piece
for all points t ∈ C◦(K̄) satisfying

hC(t) ≥ C47 := max{C45, C46}.
It follows that

hC(t) ≥ C47 =⇒ St : A
(
K(C)

)
→ At(K̄) is injective,

which completes the proof of the first part of Corollary 9.6. The second
part is an immediate consequence, since for any finite extension L/K,
a set of bounded height in C(L) is finite. �

Example 9.7. We consider the family of elliptic curves and points

ET : y2 = x2 − (2T 2 − T − 1)x+ T 2, PT = (0, T ).

The point PT has infinite order in ET
(
Q(T )

)
. We give two proofs of

this assertion. First, if PT ∈ ET
(
Q(T )

)
tors

, then all multiples of PT
would have polynomial coordinates (this is a function field version of
the Nagell–Lutz theorem), but we compute

[2]PT =
(

4T 4−4T 3−3T 2+2T+1
4T 2 , 8T 6−12T 5−14T 4+11T 3+3T 2−3T−1

8T 3

)
.

Second,if PT ∈ ET
(
Q(T )

)
tors

, then for all t ∈ Q we would have Pt ∈
Et(Q)tors. We use a computer algebra system to compute

ĥE2(P2) = 0.7983,
©2024, J.H. Silverman



64 Canonical Heights on Abelian Varieties

which shows that P2 is not a torsion point, and thus that PT is not
a torsion point. We next do a brief search for values of t ∈ Q for
which Pt ∈ Et(Q)tors. We find the values

[2]P0 = 0, [3]P1 = [3]P−1/2 = 0, and [4]P−1 = 0.

So the specialization map fails to be injective for t ∈ {0,±1,−1
2
}. I

suspect that these are the only t ∈ Q for which Pt becomes a torsion
point, but have not proven it.

Supplementary Material 9.8 (Beyond the Specialization Theorem). We briefly discuss some

of the many directions that one can go starting from Corollary 9.6.

Remark 9.9 (Higher Dimensional Bases). Suppose that instead of taking a family of abelian

varieties over a curve, we consider more generally a family A → T of abelian varieties over a base
of higher dimension. For each t ∈ T (K̄) we still get a specialization map

St : A
(
K̄(T )

)
−−→ At(K̄),

although the map St may not be a morphism even if At is smooth. So we let T ◦ ⊆ T be the
Zariski open subset on which the fibers are smooth and St is a morphism. Using the notation

described in (9.23), one might then ask whether the set T ◦noninj(K̄) is a set of bounded height. A

simple dimension count suggests that this may not be true in general. Thus let P,Q ∈ A(
(
K̄(T )

)
be distinct points. We note that

σP (t) = σQ(t) =⇒ St(P ) = St(Q) =⇒ t ∈ T ◦noninj,

so σP (T )∩σQ(T ) ⊆ T ◦noninj. On the other hand, it is reasonable to expect that if dim(T ) ≥ dim(A),

then

dim
(
σP (T ) ∩ σQ(T )

)
= dim

(
σP (T )

)
+ dim

(
σQ(T )

)
− dim(A) from the “generic” formula

codim(X ∩ Y ) = codim(X) + codim(Y ),

= 2 dim(T )−
(

dim(A) + dim(T )
)

since dimσP (T ) = dimσQ(T ) = dim(T ),

= dim(T )− dim(A).

In particular, if dim(T ) > dim(A), then σP (T ) ∩ σQ(T ) is likely to be positive dimensional, so

its K̄ points do not have bounded height, and hence T ◦noninj(K̄) is not a set of bounded height.

One solution to this problem is to relax the conclusion. The first general result on abelian

variety specialization was proven by Néron [68]. It predates Corollary 9.6 and was used by Néron

to prove that there are infinitely many elliptic curves E/Q with rankE(Q) ≥ 11. We won’t give
Néron’s most general result, but the following statement conveys the flavor: Let A → Pn be a
family of abelian varieties defined over a number field K. Then (Pn)◦noninj(K) is a thin set.35 In

particular, using the Weil height H on Pn(K),

lim
B→∞

#
{
t ∈ (Pn)◦noninj(K) : H(t) ≤ B

}
#
{
t ∈ (Pn)◦(K) : H(t) ≤ B

} = 0.

For a more refined statement that deals with all K̄ points and implies that T ◦noninj(K̄) is small,

see for example [60].

Remark 9.10 (Rank Jumps). For a 1-dimensional family of abelian varieties, Corollary 9.6 says
in particular that C◦noninj(K) is a finite set. Hence for points in the complementary set

C◦inj(K) := C(K) r C◦noninj(K),

35Roughly speaking, a thin subset of X(K) is a finite union of images Y (K)→ X(K) via finite
maps Y → X of degree at least 2. They are the sorts of exceptional sets that appear in Hilbert’s
irreducibility theorem.
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we have

rankAt(K) ≥ rankA
(
K(C)

)
for all t ∈ C◦inj(K).

This raises the question of when the specialized rank is the same as the generic rank, and when it

jumps. Further, since the sign of the functional equation affects the parity of the rank (according
to the conjecture of Birch and Swinnerton-Dyer), we expect rank jumps of 1 to occur fairly

frequently. A reasonable guess might be that the set{
t ∈ C◦inj(K) : rankAt(K) = rankA

(
K(C)

)
+

(
1 if mandated by the sign

of the functional equation

)}
is “large” in an appropriate sense. See for example [16, 78], and the papers that they cite and are

cited by, for work on rank jumps. We also note that even if the rank doesn’t jump, there is the
question of whether S

(
A
(
K(C)

))
equals At(K), or whether some of the points in the image of

the specialization map become further divisible in At(K). See for example [83] for work on the

indivisibility problem.

Remark 9.11 (Unlikely Intersections). Let π : E → C be an elliptic surface, i.e., a family of

elliptic curves, and let P : C → E be a section of infinite order, all defined over a number field K.

Corollary 9.6 tells us that the set

C◦noninj(P) :=
{
t ∈ C◦K̄) : Pt ∈ Et(K̄)tors

}
is a set of bounded height, but it is unlikely to be a finite set. The reason is that for each n ≥ 1, the

image [n]P(C) will intersect the image of the zero-section O(C) in roughly n2 points (admittedly
counted with multiplicity). So for each n we get roughly O(n2) points t ∈ C(K̄) with [n]Pt = Ot,
and thus O(n2) points in C◦noninj(P). We stress that this occurs because both [n]P(C) and O(C)

are curve lying in the surface E, so it is likely that they intersect. Further the curve [n]P(C) has

increasing degree as n→∞, so we expect to see more-and-more intersection points as n→∞.

However, suppose that we consider two independent sections P,Q : C → A. Then

C◦noninj(P) ∩ C◦noninj(Q)

is the intersection of two “unrelated” subsets of C(K̄) of bounded height, so one might guess that

it is a finite set. Similarly, if we take a family π : A → C of abelian varieties of dimension g

with g ≥ 2, then [n]P(C) and O(C) are curves sitting in a variety of dimension g + 1 ≥ 3, so we
might guess that C◦noninj(P) is already finite (subject to an appropriate non-degeneracy condition).

These sorts of ideas lead to the theory of unlikely intersections, a currently very active field of

arithmetic geometry. An influential paper [57] of Masser and Zannier proved that for the following
family of elliptic curve and points

ET : y2 = x(x− 1)(x− T ), PT = (2,
√

2(2− T ) ), QT = (3,
√

6(3− T ) ),

the set

{t ∈ C : Pt and Qt are both in Et(C)tors} is finite.

We refer the reader to a recent survey article by Capuano [10] that describes problems and recent
progress on unlikely intersection on families of abelian varieties, as well as to an older, but longer
and more comprehensive, monograph of Zannier [92] that contains an overview of the larger field

of unlikely intersections.

Supplementary Material 9.12 (Stronger Height Specialization Estimates). Theorem 9.3 has
been strengthened in various ways under various hypotheses. We gather some of these improve-

ments in the following theorem.

Theorem 9.13. We use the notation described in Table 1, and we let h+
C(t) = max

{
hC(t), 1

}
.

(a) (Ingram, special case of [41])

ĥAt,Dt (Pt) = ĥA,D(P ) · hC(t) +

{
O
(
h+
C(t)2/3

)
in general,

O
(
h+
C(t)1/2

)
if C ∼= P1.
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(b) (Tate [90]) Assume that dim(A) = 1, i.e., A is an elliptic curve. Then t 7→ ĥAt,Dt (Pt) is

a Weil height on C associated to a divisor in Div(C)⊗Q of degree ĥA,D(P ). In particular,

ĥAt,Dt (Pt) = ĥA,D(P ) · hC(t) +

{
O
(
h+
C(t)1/2

)
in general,

O(1) if C ∼= P1.

(c) (Silverman, special case of [84, 86, 87]) Assume that dim(A) = 1 and that C ∼= P1,

so K(C) = K(T ) is the field of rational functions. Then there is a modulus m and,

for each a ∈ Z/mZ, a power series fa(z) converging in some neighborhood of 0 such that

ĥAt,Dt (Pt) = ĥA,D(P ) · log |t|+ f(t mod m)

(
|t|−1

)
for all sufficiently
large t ∈ Z.

Exercises for Section 9.

Exercise 9.A. Let T/K be a smooth projective variety, and let π : A →
T be a morphism such that the generic fiber of π is an abelian variety
over K(T ). Prove an analogue of Lemma 9.1. More precisely, let hT be a
Weil height function on T relative to an ample variety, let D ∈ Div(A) be a
(symmetric) divisor, and let A◦ ⊆ A be a subvariety such that π makes A◦
into an abelian scheme over an appropriate subvariety of T . Prove that∣∣ĥA,D(x)− hA,D(x)

∣∣ = O
(
hT
(
π(x)

))
for all x ∈ A◦(K̄),

where the big-O constant does not depend on x.

Exercise 9.B. Let t ∈ C◦(K̄). Prove that the specialization map described
in Definition 9.4 is a well-defined homomorphism from A

(
K̄(C)

)
to At(K̄).

Exercise 9.C. Feel free to use a computer algebra system for this problem;
see Exercise 5.G. We consider the elliptic curve

ET : y2 = x3 + x+ T 2 and point PT = (0, T ) ∈ ET
(
Q(T )

)
defined over Q(T ).

(a) Compute [m](PT ) for 1 ≤ m ≤ 12 and make a table of the values

1

m2
deg x

(
[m](PT )

)
. (9.30)

Use your data to guess the value of ĥET ,2(0)(PT ), which is the limit
as m→∞ of (9.30).

(b) Make a table of values of

ĥEt,2(0)(Pt)

log |t|
for a sequence of large integers t. Does it seem to be converging to the
value of ĥET ,2(0)(PT ) from (a)?

(c) Make a table of values of the difference

ĥEt,2(0)(Pt)− ĥET ,2(0)(PT ) · h(t) (9.31)

for a sequence of large integers, and more generally for some t ∈ Q with
large numerators and/or denominators. Does the difference (9.31) seem
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to be converging? If so, can you guess a likely value? (This example
illustrates Theorem 9.13(c).)

Exercise 9.D. Consider the family of elliptic curves and points

ET : y2 = x3 + (3− T 2)x+ T 2, PT = (0, T ), QT = (2, 1).

(a) Find a value of t ∈ Q such that Pt and Qt generate a rank 2 subgroup
of Et(Q).

(b) Use (a) to conclude that that PT and QT generate a rank 2 subgroup
of ET

(
Q(T )

)
.

(c) Search for some values of t ∈ Q such that Pt and Qt generate a rank 1
subgroup of Et(Q). Hint : I found 5 such values, but there could be
more.

10. Further Topics for Abelian Varieties over Global
Fields

These notes cover only a small fraction of the theory of abelian vari-
eties defined over number fields and more general global fields. Among
the many important topics that have been omitted, we mention:

• The rank of the Mordell–Weil group A(K): How to compute it?
What is the average value (in families)? Is it bounded or un-
bounded for fixed K and dim(A)?

• The size of the torsion subgroup A(K)tors: Is it uniformly bounded
in terms of [K : Q] and dim(A)?

• Analytic theory: Does L(A/K, s) have an analytic continuation?
Is the conjecture of Birch and Swinnerton-Dyer true?

• Unlikely intersections: Unlikely intersections on abelian varieties.
Unlikely intersections in moduli spaces of abelian varieties.

• Special values: Generating abelian extension (explicit class field
theory) via the theory of complex multiplication.

• Transcendence theory: Trancendental values of periods and other
quantities associated to abelian varieties defined over Q̄.

11. Some Places to Read About Abelian Varieties

We list some reference books and other sources that discuss the the-
ory of abelian varieties, concentrating mostly on the geometry.

[6] Birkenhake, Christina and Lange, Herbert, Complex abelian vari-
eties, 2004

[18] Conrad, Brian, Abelian varieties (course notes), 2017.
[19] Cornell, Gary and Silverman, Joseph H. (editors), Arithmetic ge-

ometry, 1986
• Michael Rosen, Abelian varieties over C (pp. 79–101)

©2024, J.H. Silverman



68 Canonical Heights on Abelian Varieties

• J. S. Milne, Abelian varieties (pp. 103—150)
• J. S. Milne, Jacobian varieties (pp. 167-–212)

[24] Debarre, Olivier, Complex tori and abelian varieties, 2005
[33] Griffiths, Phillip and Harris, Joseph, Principles of algebraic geom-

etry, 1994 (reprint of 1978 edition)
• Complex tori and abelian varieties, (chapter 2, section 6)
• Curves and their Jacobians, (chapter 2, section 7)

[39] Hindry, Marc and Silverman, Joseph H., Diophantine geometry,
2000
• The Geometry of Curves and Abelian Varieties (Part A)

[46] Lang, Serge, Abelian varieties, 1983 (reprint of 1959 edition)
[50] Lange, Herbert, Abelian varieties over the complex numbers, 2023
[65] Mumford, David, Abelian varieties, 2008 (reprint of 1974 edition)
[66] Murty, V. Kumar, Introduction to abelian varieties, 1993
[70] Orr, Martin, Abelian varieties blog covering many topics.
[85] Silverman, J.H., Advanced topics in the arithmetic of elliptic curves,

1994
[88] Silverman, J.H., The arithmetic of elliptic curves (2nd ed), 2009

©2024, J.H. Silverman



References 69

References

[1] F. Amoroso, S. David, and U. Zannier. On fields with Property (B). Proc.
Amer. Math. Soc., 142(6):1893–1910, 2014.

[2] F. Amoroso and D. Masser. Erratum: Lower bounds for the height in Galois
extensions (Bull. London Math. Soc. 48 (2016) 1008–1012) [ MR3608945]. Bull.
Lond. Math. Soc., 48(6):1050, 2016.

[3] F. Amoroso and D. Masser. Lower bounds for the height in Galois extensions.
Bull. Lond. Math. Soc., 48(6):1008–1012, 2016.

[4] M. H. Baker and J. H. Silverman. A lower bound for the canonical height on
abelian varieties over abelian extensions. Math. Res. Lett., 11(2-3):377–396,
2004.

[5] D. Bertrand. Minimal heights and polarizations on group varieties. Duke Math.
J., 80(1):223–250, 1995.

[6] C. Birkenhake and H. Lange. Complex abelian varieties, volume 302 of
Grundlehren der mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2004.

[7] E. Bombieri and U. Zannier. A note on heights in certain infinite extensions
of Q. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat.
Appl., 12:5–14, 2001.
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année: 1963/64, Fasc. 3, pages Exposé 274, 11. Secrétariat mathématique,
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[49] S. Lang and A. Néron. Rational points of abelian varieties over function fields.
Amer. J. Math., 81:95–118, 1959.

[50] H. Lange. Abelian varieties over the complex numbers—a graduate course.
Grundlehren Text Editions. Springer, Cham, 2023.

[51] M. Laurent. Minoration de la hauteur de Néron-Tate. In Séminaire de Théorie
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List of Notation

K a field, e.g., number field, local field, algebraically closed field, 2
K̄ an algebraic closure of K, 2
X/K a smooth projective algebraic variety, defined over K, 2
K(X), K̄(X) the function field of X over K, respectively over K̄, 2
Div(X) the group of geometric divisors of X, i.e., divisors defined over K̄, 2
div(f) the divisor of a function f ∈ K̄(X), 2
∼ linear equivalence, D ∼ D′ if D −D′ = div(f) for some f ∈ K̄(X), 2
L(D) = H0

(
X,OX(D)

)
=
{
f ∈ K̄(X) : div(f) +D ≥ 0

}
, 2

`(D) = dimK̄ L(D), 2
≡ algebraic equivalence of divisors, 2
Pic(X) = Div(X)/ ∼, the Picard group of X, 2
Div0(X) = {D ∈ Div(X) : D ≡ 0}, 2
Pic0(X) = Div0(X)/ ∼, 2
NS(X) = Div(X)/ ≡, the Neron–Severi group of X, 2
ρ(X) = rank NS(X), 2
End(X) the ring of endomorphisms X → X, 2
Aut(X) the group of automorphisms X → X, i.e., Aut(X) = End(X)∗, 2

ϕD embedding fD : X ↪−→ P`(D)−1 associated to a very ample D, 3
TQ translation-by-Q map, 5
Hom(A,B) the group of isogenies from A to B, 5
End(A) the ring of endomorphisms of A, 5

ϕD the map ϕD : A→ Â induced by the divisor D, 6
End(A)Q = End(A)⊗Q, 6
ΦD = ϕ−1

H ◦ ϕD mapping NS(A)Q|toEnd(A)Q, 7
A(K)tors torsion subgroup of A(K), 8
rankA(K) rank of the group A(K), 8
(B/k, ϕ) the K/k trace of an abelian variety, 9
Twist(A/K) the set of twists of an abelian variety, 10
µm the group of mth roots of unity, 10
ξD the twisting isomorphism ξD : AD → A, 10
K a global field, i.e., a number field or the function field of a curve., 12
MK a complete set of normalized absolute values on K, 12
M∞K the archimedean absolute values in MK , 12
M◦K the non-archimedean absolute values in MK , 12
Kv the completion of K at the absolute value v ∈MK , 12
HK , hK height on PN (K) relative to K, 12
H,h absolute height on PN (K̄), 12
MK the set of standard absolute values on K, 13
|α|∞ the standard archimedean absolute value on Q, 13
|α|p the standard p-adic absolute value on Q, 13
MK the set of standard absolute values on K, 13
hK the logarithmic Weil height on PN , 13
h the absolute logarithmic Weil height on PN , 13
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fD projective embedding fD : D → P`(D)−1, 15
hX,D the absolute logarithmic Weil height on X relative to D, 15
C/k a smooth projective curve, 17
k(C) the function field of C, 17
h the absolute logarithmic Weil height on PN over a function field, 17
h(X) height of a variety, 18
Ag moduli space of principally polarized abelian of dimension g, 20
hAg Weil height function on the moduli space Ag, 20
j(A) image of A in the moduli space Ag, 20
h(A/K) the height of the principally polarized abelian variety A/K, 20

h
(m)
K m-power free height, 22
� asymptotic functions, 22
ρ 2 if D is symmetric, 1 if D is anti-symmetric, 23

ĥA,D(P ) the canonical height function on an abelian variety, 23

ĥA,D(P ) the canonical height function on an abelian variety, 25
〈 · , · 〉A,D the Neron–Tate canonical height pairing, 30
RegD(P1, . . . , Pr) the Neron–Tate regulator of P1, . . . , Pr, 30
RegD(A/K) the Neron–Tate regulator of A/K, 30

ĥX,ϕ,D canonical height associated to dynamical system ϕX → X, 31
A(K)R the R-vector space A(K)⊗ R ∼= Rr, 33
A(K)Z the image of A(K) in A(K)⊗ R, 34
‖ · ‖A,D canonical height norm on A(K)R, 34
N
(
A(K), hA,D, T

)
point counting function, 34

distv(P,D) the v-adic distance from P to D, 37
λPn,D,v local height on Pn, 37

λ̂A,D,v local canonical height on A(K̄v), 38
BD,v ”Bernoulli polynomial” in local height formula, 40
Hg Siegel upper half space, 40
θ(z, τ) theta function an an abelian variety, 40
Θ(z, τ) divisor an an abelian variety associated to a theta function, 40
Kab the maximal abelian extension of K, 47
Dqm
E the minimal discriminant of E, 49

Nqm
E the conductor of E, 49

Sqm
E the Szpiro-ratio of E, 49
KP the field of definition of the point P ∈ PN (K̄), 51

ĥϕ canonical height associated to dynamical system ϕ PN → PN , 53
A/K(C) an abelian variety defined over K(C), 55
(A, π) a family π : A → C of abelian varieties, 55
St the specialization map A

(
K̄(C)

)
→ At(K̄), 61

σQ the section C → A associated to a point Q ∈ A
(
K̄(C)

)
, 61

C◦noninj(K̄) set of t where specialization is not injective, 61
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ABC conjecture, 49
abelian variety, 4

canonical height, 23, 25
canonical height lower bound as A

varies, 48
canonical height of a subvariety, 30
canonical height pairing, 30, 33
complex multiplication, 44
constant part, 9
cyclic twist, 10, 11, 50
defined over a function field, 8
defined over K, 4
difference of canonical height and

Weil height, 56, 65
dimension of endomorphism

algebra, 6
End(A), 5
endomorphism ring, 5
equivalence class of [m]∗D, 5
Faltings height of, 20
group law is commutative, 4
group law on, 4
group of K-rational points finitely

generated, 8
h(A/K), 20
height of, 18, 20
Hom(A,B), 5
is smooth, 4
isogeny, 4
isogeny is group homomorphism, 5
K/k-trace of, 9
Lehmer conjecture, 43, 44
limit formula for canonical height,

59
local canonical height, 36
map ΦD : NS(A)Q → End(A)Q, 7

map ϕD : A→ Â induced by
divisor D, 6

moduli space, 20
Mordell–Weil theorem, 8
Mordell–Weil lattice, 34
morphism is composition of

isogeny and translation, 5
Néron model, 39, 40
Néron–Tate regulator, 30

abelian variety (continued)
Poincaré complete reducibility

theorem, 6
point counting function, 34
point in moduli space, 20
polarization, 6
principally polarized, 6, 40
quadratic twist, 10
rank jumps, 64
rank A(K), 8, 33
Rosatti involution, 7
simple, 6
specialization map, 61
specialization theorem, 61
theorem of the cube, 5, 27
theorem of the square, 5
translation-by-Q map, 5
twist, 9, 10
Twist(A/K), 10, 54

is cohomology class, 10
absolute logarithmic Weil height, 13

on a variety, 15
over a function field, 17

absolute value, 13
valuation associated to, 13
Ag, 20
A(K)R, 33
A(K)tors, 8
ample divisor, 3
anti-symmetric divisor, 23
archimedean absolute value, 13

Bernoulli polynomial, 40, 47

canonical height, 23, 25
associated to a dynamical system,

31, 53
decomposition as sum of local

canonical heights, 38
difference with Weil height, 23, 56,

65
equals 0 iff torsion, 26, 41, 43
is positive definite quadratic form,

26
Lehmer conjecture, 43, 44
limit converges, 23
limit formula in a family, 59

77
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canonical height (continued)
linearly equivalence divisors, 23
local, see also local canonical

height
lower bound, 41

for twists, 50
for varying abelian variety, 48
for varying elliptic curve, 49
for varying field, 43

Néron–Tate regulator, 30
of a subvariety, 30
of [m]P , 23
pairing, 30, 33
properties of, 25
rational or algebraic values?, 30

canonical local height
κ(A,D) constant, 38–40

Cauchy sequence, 24
ChatGPT, 32
complex multiplication, 44
conductor, 49
counting function, 34

abstract, 36
cube, theorem of, 5, 27
cyclic twist, 10, 11

canonical height lower bound, 50

Dem’janenko–Lang height
conjecture, 48

divisor, 3
anti-symmetric, 23
nef, 7
symmetric, 23
very ample, 3

Dobrowski theorem, 43
dynamical system, polarized, 31, 53

elliptic curve
complex multiplication, 44
height of, 19
j-invariant, 19, 20
Lehmer conjecture, 44
quadratic twist, 10
quasi-minimal Weierstrass

equation, 49
conductor, 49
minimal discriminant, 49
Szpiro-ratio, 49
End(A), endomorphism ring of A, 5

End(A)Q, the endomoprhism algebra
of A, 6

endomoprhism ring, 5
endomorphism algebra

dimension of, 6
map ΦD from NS(A)Q, 7

extension formula, 13

Faltings height, 20
Fejér kernel, 46, 53
field of definition, 51
Fourier averaging method, 46
function field, 17

abelian variety defined over, 8
height over a, 17
variety defined over, 8

hAg , 20
height, see also Weil height,

canonical height, local canonical
height,

equals 0 iff root of unity, 42
expansion ratio, 22
Faltings, 20
lower bound for, 42, 51
m-power free height, 22
of a principally polarized abelian

variety, 20
of an abelian variety, 18
of an elliptic curve, 19
on a variety, 15
on PN , 13
over a function field, 17
Weil, 13

height machine, 15

ĥϕ(P ), 53
history, a soupçon, 39, 52

h
(m)
K , 22

ĥX,ϕ,D(P ), 31

isogenous, 4
isogeny, 4

is equivalence relation, 11
is group homomorphism, 5

isogeny conjecture, 20

j(A) ∈ Ag, 20

κ(A,D), 39, 40
K/k-trace, 9
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Kronecker theorem, 42
abelian variety analog, 43
dynamical analog, 54

Lang height lower bound conjecture,
48

Lang–Néron theorem, 9
lattice, counting points of bounded

norm, 35
Lebesgue measure, 35
Lehmer conjecture

best constant, 43
Dobrowski estimate, 43
for abelian varieties, 43, 44
for CM abelian varieties, 44
for CM elliptic curves, 44
for elliptic curves, 44
Fourier averaging method, 46
for Gm, 42
over restricted field extensions, 47
stronger version, 47
transcendence theory method, 45

LMFDB, 53, 55
local canonical height, 36

archimedean absolute value, 40
bad reduction, 40
decomposition of global, 38
explicit formulas, 39
good reduction, 39
normalization, 38
on A(K̄v), 38

local height on PN , 37
logarithmic Weil height, 13

absolute, 13
on a variety, 15
over a function field, 17

Magma, 32
Masser–Osterlé conjecture, 49
minimal discriminant, 49
MK , 13
moduli space of abelian varieties, 20

height hAg on, 20
Mordell conjecture, 20
Mordell–Weil theorem, 8

over function field, 9
Mordell–Weil lattice, 34
m-power free height, 22

nef divisor, 7
Néron local height, 36
Néron model, 39, 40
Néron–Severi group

map ΦD to End(A)Q, 7
of PN , 4

Néron–Tate height, 23
Néron–Ogg–Shafarevich criterion, 54
Néron–Tate pairing, 30

extension to A(K)R, 33
Néron–Tate regulator, 30
non-archimedean absolute value, 13

valuation associated to, 13
Northcott property of height, 15

may be false for k(C), 18
number field, absolute values on, 13
numerically effective divisor, 7

orbit, 54

PARI-GP, 32
Picard group of PN , 4
Poincaré complete reducibility

theorem, 6
point counting function, 34

abstract, 36
polarization, 6, 40
polarized dynamical system, 31, 53
positive definite quadratic form, 26
preperiodic point, 54
principal polarization, 6, 40

Zarhin trick, 6
product formula, 13
projective space, field of definition of

a point, 51

quadratic form, 26
quadratic twist, 10

elliptic curve, 10
quasi-minimal Weierstrass equation,

49

rank jumps, 64
rank A(K), 8, 33

uniformly bounded, 8
Rosatti involution, 7

Sage, 32
Shafarevich conjecture, 20
Siegel upper half space, 40
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simple abelian variety, 6
specialization map, 61
specialization theorem, 61

height estimates, 56
higher dimensional bases, 64
rank jumps, 64
strong height estimates, 65
unlikely intersections, 65

square, theorem of, 5
symmetric divisor, 23
Szpiro conjecture, 49
Szpiro-ratio, 49

Tate isogeny conjecture, 20
telescoping sum, 23
theorem of the cube, 5, 27
theorem of the square, 5
theta divisor, 40
theta fuction, 40
torsion subgroup A(K)tors, 8

uniformly bounded, 8
trace of abelian variety defined over

function field, 9, 26
transcendence theory method, 45
translation-by-Q map, 5
twist

cyclic, 10, 11, 50
elliptic curve, 10
of abelian variety, 9, 10
quadratic, 10

Twist(A/K), 10, 54
Twist(A/K) is cohomology class, 10

unlikely intersections, 65

v-adic distance, 37
valuation, 13
variety, height of, 18
very ample divisor, 3

map associated to, 3

Weierstrass equation, quasi-minimal,
49

Weil height
absolute, 13
additivity, 15
algebraic equivalence, 16
equals 0 iff root of unity, 42
functoriality, 15

Weil height (continued)
functoriality fails for rational

maps, 22
homomorphism from Pic(X), 16
linear equivalence, 15
logarithmic, 13
lower bound for, 42, 51
Northcott property, 15
Northcott property may be false

for k(C), 18
on a variety, 15
on PN , 13

is non-negative, 14
is well defined, 14
over a function field, 17

over a function field, 17
over function field, 17
positivity, 16
properties of, 15

Weil height machine, 15

Zarhin trick, 6
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Appendix A. Projects

This section describes projects that we might work on during the AWS.

Project I: Trace Relations on Abelian Varieties.
Let A/K be an abelian variety defined over a field K, and let L/K
be finite a Galois extension with Galois group G(L/K). Then we can
define a trace map from A(L) to A(K) by the formula

TraceA,L/K : A(L) −→ A(K), TraceA,L/K(P ) =
∑

σ∈G(L/K)

σ(P ).

This project asks you to investigate this trace map. Here are some
possible questions, but you are encouraged to formulate questions of
your own.

(a) Is there a good criterion for when TraceA,L/K is surjective? You
might consider this question for K a number field, a function field,
a local field such as Qp, or a finite field.

(b) Suppose that

TraceA,Lv/Kv : A(Lv) −→ A(Kv)

is surjective for every completion of L/K. Does this imply that
TraceA,L/K is surjective? If not, can you find an obstruction, for
example an obstruction that lives in a Galois cohomology group?

(c) Same questions as (a) and (b), but restrict the field. For example,
take [L : K] = 2, soA(L) is (almost) isomorphic toA(K)⊕ Aχ(K),
where Aχ is the L/K quadratic twist of A/K. Or if A admits CM
by dth roots of unity, you could take G(L/K) to be cyclic of or-
der d, soA(L) again (more-or-less) decomposes as a sum⊕χAχ(K),
where theAχ are the L/K twists ofA by the characters ofG(L/K);
see Section 3.3.

(d) Let K be a number field or function field. What, if anything, can
one say about the function

A(L) −→ R, P 7−→ ĥA,D
(
TraceA,L/K(P )

)
? (A.1)

Note that ĥA,D
(
σ(P )

)
= ĥA,D(P ) for all P ∈ A(L) and all σ ∈

G(L/K). So for example, if D is anti-symmetric, then (A.1) is

just the map P → [L : K]ĥA,D(P ). But (A.1) seems more inter-
ested if D is ample and symmetric. It might also be interesting to
consider the map

A(L) −→ R, P 7−→ det
(〈
σ(P ), τ(P )

〉
A,D

)
σ,τ∈G(L/K)

. (A.2)
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In particular, the map (A.2) sends P to 0 if and only if the set of
Galois conjugates

{
σ(P ) : σ ∈ G(L/K)

}
is Z-linearly dependent.

References. There has been work done on local/global trace prob-
lems for elliptic curves. In particular, Çiperiani–Ozman [12] includes a
detailed analysis of the local/global trace problem for the case g = 1
and [L : K] = 2, i.e., for elliptic curves and quadratic extensions.

Project II: Northcott and Bogomolov Fields for Abelian Va-
rieties.
For this project, we set the following notation (unless we say other-
wise):

K/Q a number field (although you might consider function fields,
too).

A/K an abelian variety of dimension g ≥ 1.
D ∈ DivK(A), an ample symmetric divisor.

ĥA,D the absolute logarithmic canonical height on A(K̄).

Northcott’s theorem (Theorem 4.8(d), see also Remark (4.14)) says
that PN(K) has only finitely many points of bounded height. This
implies that there is a constant c(K) > 0 so that for all α ∈ K,
either h(α) = 0 or h(α) ≥ c(K). These properties clearly do not
hold if we replace K with Q̄, which raises an interesting question: For
which infinite algebraic extensions L/Q are these properties true. This
prompts the following two definitions, which we formulate for abelian
varieties, but which have been even more widely studied for the Weil
height on a field.

Definition A.1. Let K/Q be a number field, let A/K be an abelian
variety, and let D ∈ DivK(A) be an ample symmetric divisor. Let L/K
be an algebraic extension (generally of infinite degree).

We say that L has the Northcott Property for A/K if for all B, the
set {

P ∈ A(L) : ĥA,D(P ) ≤ B
}

is finite.

We say that L has the Bogomolov Property for A/K if there exists a

constant c(A,D,L) such that every P ∈ A(L) satisfies either ĥA,D(P ) =

0 or ĥA,D(P ) ≥ c(A,D,L). Equivalently, if

inf
{
ĥA,D(P ) : P ∈ A(L) r Ators(L)

}
> 0,

where we conventionally set the infimum of the empty set equal to 1.

In this project you’ll investigate fields that have the Northcott and
Bogomolov Properties. (As a warm-up, prove that the Northcott prop-
erty implies the Bogomolov property.) In particular, we will look at
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abelian variety analogues of some of the results that have been proven
about fields having the Northcott and Bogomolov Properties; see be-
low for a number of references. But as always, you are encouraged to
formulate questions of your own.

(a) Habegger [34] proves that if E/Q is an elliptic curve, then the
field Q(Etors) generated by the torsion points of E has the Bo-
gomolov property for E, i.e., there exists ε > 0 such that then
ĥE,(0)(P ) ≥ ε for all non-torsion points P ∈ E

(
Q(Etors)

)
. [Here

ĥE,(0) is the height relative to the divisor (0) ∈ Div(E).]
(i) Let E/Q be an elliptic curve. Does Q(Etors) have the Bogo-

molov property for the Weil height h?
(ii) Let E/Q and E ′/Q be non-isogenous elliptic curves. Does

Q(Etors) have the Bogomolov property for E ′?
(iii) Consider analogous questions for higher dimensional abelian

varieties.
(b) Investigate the following conjecture:

Conjecture A.2 (Remond [77]). For a subgroup Γ ⊆ A(K̄), let

rank(Γ) = dimQ Γ⊗Q,
Γdiv =

{
P ∈ A(K̄) : nP ∈ Γ for some n ≥ 1

}
.

Then for all Γ ⊆ A(K̄) of finite rank, there exists a constant c(Γ) >
0 such that

ĥA,D(P ) ≥ c(Γ) for all P ∈ A
(
K(Γ)

)
r Γdiv.

Note that if we take Γ = {0}, then Γdiv = A(K̄)tors, so if we also
take g = 1, this is proven in [34].

(c) There are many results in the literature that give Lehmer-like lower

bounds for ĥA,D(P ) under the assumption that the field of defini-
tion K(P ) of P has some special property. For example, there is
the very strong bound (8.9) under the assumption that K(P )/K
is an abelian extension.

Here’s another example. It is a (not yet proven?) abelian variety
analogue of a theorem that Amoroso–Masser [2, 3] proved for Q̄∗.
Let K/Q be a number field, let A/K be an abelian variety, let D ∈
DivK(A) be an ample symmetric divisor, and let ε > 0. Then there
is a constant c(A/K,D, ε) such that if P ∈ A(K̄) is a non-torsion
point such that K(P )/K is Galois extension, then

ĥA,D(P ) ≥ c(A/K,D, ε)[
K(P ) : K

]ε . (A.3)
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Notice that the lower bound (A.3) is stronger than in Lehmer’s
conjecture (Conjecture 8.7), but weaker than (8.9).

There are also many results in the literature, especially for Q̄∗,
but also for abelian varieties, that give Lehmer-type lower bounds
under a ramification condition on K(P )/Q. For example, there
are papers that assume that K(P ) is totally real, or that K(P ) is
totally p-adic for some prime p; see for example [7, 14, 27, 40]

This project would involve looking at some of these known re-
sults to learn about methods used, and also to think about whether
there are other sorts of fields for which one might be able to prove
a Lehmer-type result.

(d) In the context of Definition A.1, we might say that L/K has
the Universal Northcott Property if it has the Northcott Prop-
erty for every abelian variety A/K, and similarly for the Univer-
sal Bogomolov Property. For example, [4] says that Kab is uni-
versally Bogomolov for abelian varieties. Are there other univer-
sally Bogomolov fields satisfying [L : K] =∞? What can one say
about them? Are there any universally Northcott fields satisfy-
ing [L : K] =∞?

References. The following papers have Northcott and Bogomolov re-
sults for fields and various sorts of group varieties. It is not meant to be
comprehensive, but looking at any of these articles will likely suggest
abelian variety problems to work on!

• [1] Francesco Amoroso, Sinnou David, and Umberto Zannier, On
fields with Property (B), Proc. Amer. Math. Soc. 142 (2014), no.
6, 1893–1910.
• [7] Bombieri, Enrico; Zannier, Umberto, A note on heights in certain

infinite extensions of Q, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat.
Natur. Rend. Lincei (9) Mat. Appl.12 (2001), 5–14.
• [13] Checcoli, S.; Fehm, A. On the Northcott property and local

degrees. Proc. Amer. Math. Soc. 149 (2021), no. 6, 2403-–2414.
• [15] Checcoli, Sara; Widmer, Martin. On the Northcott property

and other properties related to polynomial mappings. Math. Proc.
Cambridge Philos. Soc. 155 (2013), no. 1, 1—12.
• [28] Roberto Dvornicich and Umberto Zannier, On the properties of

Northcott and of Narkiewicz for fields of algebraic numbers. part 1,
Funct. Approx. Comment. Math. 39 (2008), no. part 1, 163–173.
• [31] Arno Fehm, Three counterexamples concerning the Northcott

property of fields, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.
29 (2018), no. 2, 309–314.
• [34] P. Habegger, Small height and infinite nonabelian extensions,

Duke Math. J. 162 (2013), no. 11, 2027–2076.
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• [62] Mello, Jorge; Sha, Min. On the properties of Northcott and
Narkiewicz for elliptic curves. Int. J. Number Theory 18 (2022),
no. 10, 2129—2144.
• [91] Martin Widmer, On certain infinite extensions of the ratio-

nals with Northcott property, Monatsh. Math. 162 (2011), no.
3, 341–353.

Project III: Experimental Investigation of Lehmer’s Conjec-
ture for Elliptic Curves.
There is a lot of data available for the classical Lehmer conjecture
for Q̄∗; see for example [64]. And there is a conjectural value for the
non-root of unity α ∈ Q̄∗ that minimizes d(α)h(α); see Remark 8.3. As
far as I am aware, there are no comparable computations for any ellip-
tic curve. In this project we’ll choose a convenient elliptic curve E/Q
and search for non-torsion points P ∈ E(Q̄) of small degree such

that d(P )ĥE(P ) is small.

(1) Choose an elliptic curve, for example, one of

E1 : y2 = x3 − x ∆(E) = 26 j(E) = 26 · 33

E2 : y2 + y = x3 ∆(E) = −33 j(E) = 0

E3 : y2 + y = x3 − x2 ∆(E) = −11 j(E) = −212 · 11−1

E4 : y2 + y = x3 − x ∆(E) = 37 j(E) = 212 · 33 · 37−1

For E1 and E2, it may be best to go to a field where they have
everywhere good reduction and change the Weierstrass equation.
For E3 and E4, they’re already semi-stable, so their equations are
already minimal.

(2) Choose a number field, e.g., K = Q(
√

7) with RK = Z[
√

7], or
K = Q(

√
−3) with RK = Z[(1 +

√
−3)/2]. Choose some x ∈ RK

and solve for y in a quadratic extension L of K to get a point P ∈
E(L). (Or search for a point in E(K).)

(3) If P reduces to the singular point at some prime of bad reduction,
replace it by nP for some small n so that this doesn’t happen.

(4) For each real and complex embedding of L, compute the corre-
sponding local height of nP . (Note that these local heights may
be computed analytically to high accuracy without using informa-
tion about the ring of integers of L.) Add these to 1

2
the norm

of the denominator of x(nP ) to get the canonical height of nP .

Then divide by n2 to get ĥE(P ).
(5) Repeat for a large number of x values and try to find points with

small canonical height.
©2024, J.H. Silverman



86 Canonical Heights on Abelian Varieties

Side Project: It might be useful to develop an explicit estimate of
the following form: For E/Q and P ∈ E(Q̄), let

K = Q(P ) and d = [K : Q].

Then there is a lower bound

ĥE(P ) ≥ C1(d) · log
∣∣Disc(K/Q)

∣∣− C2(d,E).

This can be proven by combining an estimate for ĥE(P ) − h
(
x(P )

)
(there are many articles giving such bounds) and a lower bound for the
Weil height of a point in terms of the discriminant of the field generated
by its coordinates (see for example [82, Theorem 2]). If we find explicit
values for C1(d) and C2(d,E) for our curve E, then we might be able
to determine, for example, the absolutely smallest possible height over
all (say) quadratic or cubic fields.
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